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ABSTRACT 
Taxonomic composition and quantitative distribution of calcareous nannofossils in the nothern and central 
parts of the South China Sea were studied in 146 samples of surface sediments taken from estuary, 
continental shelf, continental slope and deep-water basin. This paper reports distribution patterns of 
nannofossils in the area, including nannofossil abundance, species, assemblages and specimen size. 
Abundance increases from shelf to slope, with a decrease from the lower part of the slope towards the abyssal 
plain. The assemblages are dominated by Emiliania huxleyi, Gephyrocapsa oceanica and Florisphaeva profindo. 
Ecologically the effects of water temperature, and nutrient inputs can be detected in the distribution of 
nannofossils, while dilution by terrigenous materials and deep sea carbonate dissolution influence the 
sedimentological aspect of the samples. The composition of the South China Sea nannofossil assemblage 
enables it to be grouped with the central zone of the North Pacific in biogeographic zonations of 
nannoplankton. J. Micropalaeontol., 11 (2): 167-176, December 1992. 

INTRODUCTION 
In the Chinese sea area, systematic research on calcareous 
nannofossils from surface sediments has been concentrated in 
theEastChinasea (Wangand Min, 1981; WangandSamtleben, 
1983; Wang and Cheng, 1985; Zhang and Siesser, 1986). In the 
South China Sea, Okada and Honjo (1975) analysed calcare- 
ous nannoplankton in 61 water samples collected south of 
11"N, also Chen and Shieh (1982), Okada (1983) analysed 
calcareous nannofossils in surface sediment samples from the 
southern part of the Sea. Okada (1983) studied samples from 
the Gulf of Thailand, Chen and Shieh (1982) mainly worked on 
the Sunda Shelf and Southern Basin of the Sea. Varol (1985) 
studied calcareous nannofossils from nearshore localities in 
Jason Bay. There have been no previous studies of the calcar- 
eous nannofossils in the surface sediments of the northern part 
of the South China, which are the subject of this study. 

STUDY AREA 
The samples were collected from the the northern part of the 
South China Sea (12"-23"N, 108"-118"E) (Fig.l), including the 
eastern part of Beibu Gulf, continental shelf, continental slope, 
and abyssal plain. Two major rivers flow into the area -the 
Zhujiang (Pearl) River and the Hanjiang River. The bottom 
topography of the area is high in the northwest and low in the 
southeast, the maximum water depth in the area is over 
4000m. The shelf / slope boundary is at a depth of 
approximately 150m. The abyssal plain starts at approximately 
3600m (Physical Geography of China Compilation Committee, 
1979). From continental shelf to abyssal plain, the clastic 
sediments fine gradually, the 30% sand contour is at about 
200m (Fig.2a); and CaCO, content gradually declines, it is less 
than 10% below a water depth of 3500m (Fig.2b). 

MATERIALS AND METHODS 
146 samples were studied; 100 of these were collected during 
1983-84 by the Second Institute of Oceanography, State Oceanic 
Administration, 46 were collected during 1974-78 by South 
China Sea Headquarters of Geological Survey, MGMR (Fig.1). 

Light microscope slides were prepared by diluting 0.1 grams 
of sediment in 40 millilitres of distilled water and spreading a 
drop of the slurry on a cover glass (24 X 32 mm'). All samples 
were studied under polarised light microscope (Leitz 
ORTHOLUX 2 POL BK). The number of nannofossils per 10 
randomly selected fields of view at X630 magnification was 
used as the nannofossil abundance of the sample. If this 
abundance was under 300, a further 10 fields were examined, 
and the results averaged. In addition, these abundances are 
converted to specimens per gram of sediment (Tab.1) 
(specimens per gram of sediment = specimens per 10 fields of 
view X (24x32mm2 / 10 fields of view area) X (40ml / drop 
volume) X ( lg  / 0.lg) = specimens per 10 fields of view X 1300 
X 880 X 10 = specimens per 10 fields of view X 11.44 million). 
If the difference between specimens per 10 fields of view 
counted in different times is 1, the difference between 
specimens per gram of sediment estimated in different times 
will be 11.44 million. The estimate of specimens per gram of 
sediment is accurate to at most lo'. Seventy-one samples with 
more abundant nannofossils were examined with a scanning 
electron microscope (Hitachi H-8010 SEM part of Hitachi H- 
800 transmission electron microscope) at X5000 magnifica- 
tion. In forty-eight of them, with the most abundant 
nannofossils, the assemblages were counted (counts of more 
than 300 specimens) to assess the relative abundance of taxa 
and specimen size. 
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Fig. 1. Localities of sample stations: identified under polarised microscope, 0 identified under electron microscope, counted for relative 
abundance of taxa under electron microscope (Topographic map reduced from South China Sea Institute of Oceanology, Academia Sinica, 1981). 

RESULTS 
Nannofossil Abundance 
The abundance distribution of calcareous nannofossils (Fig.2~) 
is closely related to water depth. Specimens are widely distrib- 
uted in the samples, from nearshore at a water depth of few 
metres to the deep basin at a water depth of more than 4000 
metres. However, theabundancesrange from0 to 1664. Abun- 
dances over 300 are limited mainly to water depths of 200m to 
3500m (Tabs.1 and 2, Fig.2~). Calcareous nannofossils form 
less of the sediments in the shelf area (<200m) and much less 
of the sediments in the abyssal plain (>3500m), where almost 
no nannofossils could be found in most samples. 

Sediment grain size and carbonate content are closely re- 
lated to nannofossil abundance. Nannofossil content is low in 
coarse sediments and high in fine sediments. For example, at 
stations on the northern shelf, sediments are coarse and the 
sand content is high, and most nannofossil abundances are 
less than 300 (Figs. 2a and 2c). Generally speaking, high 
nannofossil contents correlates with high carbonate content 
(Figs. 2b and 2c). 

Species Distribution 
Twenty-nine calcareous nannofossil species or groups of 
species, and two species of calcareous dinoflagellates 

168 



Calcareous Nannofossils from the South China Sea 

110- 1120 114. 

~ 

2 30% 

116 ' 1180 

. .  

0 - < 30% 

a 
114- 116' 1 118' 

. .  

I 
>, 0.7 0. < 0.7 

21 

19. 

17 ' 

15 * 

13 ' 

11 a 

eza. 2 10% o.< 10% 

b 
1 

21 

190 

17 ' 

15 

13 * 

11 

21 

190 

17 

I5 

83 4 

I 1  

23" 

21 

19"  

17 '  

15 O 

13' 
'/ . . . . .  

Fig. 2. (a) Sand distribution in the central and northern parts of the South China Sea; @) CaCo, distribution in the central and northern parts of 
the South China Sea; (c) Distribution of calcareous nannofossil abundance; (d) Relative abundance of broken specimens to all specimens of 
Emiliania huxleyi. 
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(Thoracosphaera heimii and T .  tuberosa), were identified (Tab.3). 
For each species, the percentage of samples it occurred in 
“frequency“, and the average percentage of the total counted 
assemblages in “average relative abundance”, are given in 
Table 3. In addition, some reworked nannofossils, such as 
Discoaster deflandrei, D. brouweri, Pseudoemiliania lacunosa, 
Gephyrocapsa protohuxleyi, G. aperta and Sphenolithus abies, 
occurred sporadically in samples from the slope (Tab.5). Dis- 
tributional aspects are described below for major species. 

Emiliania huxleyi (Lohmann) Hay & Mohler. E. huxleyi (Fig3a) 
is widely distributed and an abundant species in the area, it 
occurred in all 48 samples counted. The relative abundance 
per sample varies from 15.83% to 86.13%, it is highest between 
about 150m and 2000m depth (>%yo). This species has the 
greatest biogeographic range in modern oceans (McIntyre 
and Be, 1967), and is often found in nearshore seas, for exam- 
ple, in marginal seas of the western Pacific (Okada and Honjo, 
1975; Chenand Shieh, 1982; Wang and Cheng, 1985). McIntyre 
and Be (1967) described a ”warm water form” and a ”cold 
water form”. The ”warm water form” has T-shaped elements 
in both shields and a delicate plate of interconnected rods 
forming a grillcoversthe proximal side of the central opening. 
The “cold water form” has T-shaped elements only in the 
distal shield and the solid proximal shield has a central plate 
of thin interlocked elements completely closing the pore. 
These forms were identified and counted separately in the 
study, but there was no indication that their occurrence 
varied with temperature. The relative abundance of the spe- 
cies (Fig.3a) and the relative abundance of broken specimens 
(Fig.2d) have a close relation to water depth. 

Gephyrocapsa oceanica Kamptner. This is an important spe- 
cies in coccolith assemblages in modern oceans and abundant 
in marginal seas around the western Pacific Ocean, it is a major 
component of coccolith assemblages in the East and South 
China Seas (Okada and Honjo, 1975; Chen and Shieh, 1982; 
Okada, 1983; Wang and Samtleben, 1983; Wang and Cheng, 
1985). G. oceanica (Fig.3b) is also abundant and widespread in 
this area, and found in all samples counted for relative abun- 
dance. The relative abundance varies from 0.6% to 70%. The 
high values (>25%) are in the northern continental shelf at 
water depths of less than 150m and in the lower continental 
slope at water depths of more than 2000m. 

Florisphaera profunda Okada & Honjo. F. profunda (Fig.3c), in 
terms of its dominance, is third only to E. huxleyi and G. 
oceanica. It is found in all assemblages counted. It is abundant 
(>lo%) in sediments from water depths of 1000 to 2000m. It 
has been widely neglected due to its unusual shape, so few 
references to the species can be found. According to Okada 
and Honjo (1973), living F. profunda is abundant in the deeper 
surface waters (100-150m) over a wide temperature range (10- 
28°C). Okada (1983) suggested that its relative abundance in 
surface sediments shows a positive correlation with water 
depth from the lower continental shelf to abyssal depths and 
that F. profunda dominates the associations in deep basins. 
This study found a different distribution. The relative 

abundance of F.  profunda increases with water depth to 2000m 
but decreases below this depth. 

Calcidiscus leptoporus (Murray & Blackman) Loeblich & 
Tappan. C. leptoporus (Fig3d) is distributed in water depth 
from 1000 to 3500m. Its average relative abundance is 0.79%, 
with values greater than 0.8% mainly found in water depths 
from 2000 to 3500m. The different varieties of C. leptoporus 
proposed by McIntyre et al. (1967,1970) were not distinguished 
because total numbers counted were low. 

Umbilicosphaera sibogae (Weber-van Bosse) Gaarder. U. 
sibogae (Fig3e) is not abundant (average relative abundance is 
2.86%), but it is present in most samples (frequency is 89.58%). 
There is little regularity of relative abundance variation 
although most of the stations in which the value is over 4% 
come from water depths between 1000 and 3000m. McIntyre 
and Be (1967) distinguished cold water and warmwater forms 
of U. sibogae. They were not distinguished in this study be- 
cause of their low relative abundance. The species was also 
found in the East China Sea (Wang and Cheng, 1985), but with 
lower relative abundances than those found here. 

Syracosphaera pulchra Lohmann. This species is rare (aver- 
age relative abundance is 0.84%) and there is no obvious 
pattern to the relative abundance variation (Fig3f). 

Umbellosphaera tenuis (Kamptner) Paasche. Although U. 
tenuis is rare (average relative abundance is 0.43%) (Fig.3g), it 
is present in most samples (frequency 87.50%). 

Helicosphaera carteri (Wallich) Kamptner. The relative 
abundance of H. carteri (Fig.3h) is very low (average is only 
0.32%), however, it is widely distributed in the area (frequency 
93.75%). 

Assemblage Zones 
Based on the distribution of species and their relative 
abundance in the surface sediments, three assemblage zones 
(FigRa) can be established: 
Zone 1. Zone 1 approximately corresponds to the northern 
continental shelf (d50m). G. oceanica and E.  huxleyi are 
abundant in the zone. F.  profunda, Umbellosphaera irregularis, U. 
sibogae and Umbilicosphaera hulburtiana can be found. 
Zone 2. Zone 2 is situated in the upper continental slope at 
depths of 150 to 2000m. E .  huxleyi is predominant, G. oceanica 
and F.  profunda are common in the zone. U. irregularis, U. 
sibogae, U.  tenuis, Thoracosphaera heimii, Cricosphaera calvata 
and Discosphaera tubifer can be found. The zone can be 
subdivided into two subzones based on relative abundance 
variation of F. profunda. F. profunda is more abundant in 
subzone 2b than in 2a. 
Zone 3. Zone 3 is in the lower continental slope (>2000m). G. 
oceanica is abundant, E. huxleyi is still common, but much less 
abundant than in zone 2. C. leptoporus, F. profunda, U. sibogae, 
U. irregularis, U. tenuis, H. carteri and H. hyalina can be found. 
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Fig. 4. (a) Calcareous nannofossil zones; (b) Distribution of small calcareous nannofossils ( E .  huxleyi G. oceunica) 

Specimen Size 
E. huxleyi and G. oceunicu are smaller than 6 microns and can 
be designated "small nannofossils". The percentage of the 
small nannofossils is higher (over 85%) nearshore and lower 
seawards (Fig.4b). 

DISCUSSION 
Comparison 
The nannofossil assemblages in the central and northern parts 
of the South China Sea can be compared with those in the 
southern part of the Sea (Chen & Shieh, 1982). The dominant 
species are the same, E. huxleyi and G. oceunicu. There is a 
similar relative abundance variation trend of dominant species. 
G. oceunicu prevails in nearshore environments, increasing in 
number towards the shoreline, while E. huxleyi increases in 
relative abundance towards continental slope and open ocean 
environments, decreasing again in the deep sea basin. But E. 
huxleyi predominates in the central and northern parts, and G. 
oceunicu predominates in the southern part. What caused this 
difference remains to be studied. 

Tab.4 compares assemblages for the East China Sea (Wang 
and Cheng, 1985) and the study area. They are generally 
similar, however, the dominance of E. huxleyi and G. oceanicu 
is higher in the East China Sea. The relative abundances of 
other species, especially warm water species, U. irregularis, U. 

sibogue and 0.frasilis are higher in the South China Sea. These 
differences may result from the difference in latitudes. The 
South China Sea is situated in the tropics, the variation of 
surface water temperature there is less than that in the East 
China Sea. 

Roth and Coulbourn (1982) recognized four coccolith as- 
semblages (equatorial, central, transitional and subarctic) 
(Tab.4) in surface sediments of the North Pacific. They found 
that the coccolith assemblages followed the distribution of 
surface water masses. The central assemblage is dominated by 
E. huxleyi and G. oceunicu. Althoughnot a dominant species, U. 
tenuis was considered an important water-mass discriminator 
because it is restricted to the central water-mass. Comparing 
the average nannofossil assemblage in the central and north- 
ern South China Sea with the Pacific assemblages, that of the 
South China Sea is most closely equivalent to the central 
assemblage of the North Pacific, as shown by the dominance 
of E. huxleyiand G. oceunica, and the presence of U. tenuis(Tab.4). 

Controlling Factors 
E. huxleyi and G. oceanicu are adapted to different environ- 
ments. The former is the most ubiquitous species in today's 
seas, and can be found from tropical to subpolar waters; the 
latter is a warm water species, occurring in tropical, subtropi- 
cal and temperate zones. The high water temperature in the 
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South China Sea is responsible for the dominance of G. oceanica 
and E. huxleyi in the area. E. huxleyi is found in low to highly 
fertile waters throughout the world's oceans, but G. oceanica 
dominated in highly fertile and productive waters. Nutrients 
(eg .  phosphate) have an effect on G. oceanica. In the Gulf of 
Aqaba (Elat), Red Sea, Winter (1982) found that the distribu- 
tion of G. oceanica was closely related to the distribution of 
phosphate. While G. oceanica in surface sediments was de- 
creasing with phosphate from south to north, E. huxleyi was 
increasing. So it is likely that the riverine nutrient input cause 
the higher productivity of G. oceanica in the coastal area. 
However, the predominance of G. oceanica over E. huxleyi in 
the deep water area might be due to dissolution of delicate E.  
huxleyi. Evidence for this is provided by the increase in broken 
specimens of E.  huxleyiin samples from below 2000m (Fig.2d). 
Also the increase in C. leptoporus in deep water (Zone 3) are 
presumably dissolution effects. 

The distribution of nannofossils in surface sediments is also 
influenced by sedimentological factors. Gartner (1981) found 
that on the continental shelf of the northern Gulf of Mexico 
coccoliths were relatively rare in the predominantly detrital 
sediments, even though they were produced in abundance in 
the water column. He thought this was due to the dilution by 
detrital materials. The continental shelf of the studied area 
receivesahighinput of terrigenous materialsfrom thezhujiang 
and Hanjiang Rivers, so it is likely that the low abundance of 
nannofossils nearshore is a result of dilution by terrigenous 
materials. As noted above, the distribution of calcareous 
nannofossils is closely related to the sediment carbonate 
content. A low value of abundance often corresponds to a low 
value of carbonate content. Although there is a close 
relationship between distributions of nannofossil and 
carbonate, carbonate content depends not only on nannofossils 
but also on other factors. Distribution of sediment carbonate in 
the South China Sea is mainly controlled by three factors: 
dilution by non-carbonate components, supply of calcareous 
skeletons of organisms, and carbonate dissolution. Carbonate 
content is lower near shore (e.g. 12.30%, 11.80%, 18.80% and 
16.60% in stations G81, G82, G83 and G86) (Tab.5) due to 
dilution by terrigenous materials. It is also controlled by the 
supply of biogenic carbonate. Its distribution is closely related 
to these fossils, for example, foraminifers and nannofossils. It 
decreases towards abyssal plain as foraminifers (Zheng, 1987) 
and nannofossils (Figs.2b and 2c) do. Another important 
controlling factor of the distribution and content of carbonate 
is preservation. Carbonate dissolution increases with depth as 
bottom water becomes more undersaturated in calcium 
carbonate (Kennett, 1982). So low value of carbonate content 
including foraminifers and nannofossils (40%) could be at- 
tributed to the carbonate dissolution in deep sea. The relation 
between nannofossil abundance and sediment grain size 
reflects, to a certain extent, the effect of sorting on grain size, 
which results in more abundant nannofossils in fine sediments 
than in coarse ones. 

CONCLUSIONS 
1. Calcareous nannofossil abundance in surface sediments 

increases from continental shelf to slope, with a decrease from 
lower continental slope to abyssal basin. 

2. E. huxleyi and G. oceanica are dominant species. The high 
relative abundance zones of the latter are situated in northern 
continental shelf and lower continental slope. Highest value 
of the former is in the area between water depths about 150 to 
2000 metres. 

3. The nannofossil assemblages in the northern and central 
parts of the South China Sea are similar to those in the East 
China Sea and in the central zone of the North Pacific Ocean. 
4. There are two main groups of controlling factors: a) 

ecological factors including water temperature and supply of 
nutrients, b) sedimentological factors including dilution by 
terrigenous materials, deep water carbonate dissolution and 
the sorting effect. 
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Table 1. Nannofossil abundance and water depth (bathymetric data provided by Second Institute of Oceanography, SOA and South China Sea 
Headquarters of Geological Survey, MGMR). N - Sample number 

174 



Calcareous Nannofossils from the South China Sea 

water 
depth,  
metres 

number n a n n o f o s s i l  abundance 
of 
samples minimum maximum average 
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1488 
1664 
1172 
285 

212 

Beibu Gulf 58 

Zhu j i a n g  90 
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northern 112 
s h e l f  

412 
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948 
843 
349 
30 

25 

Table 2. Calcareous nannofossil abundancies with water depth 
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1000-2000 
2000-3000 
3000-3500 
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Crenalrthus sessilis (Lohmann) Okada L MacIntyre 
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Cricosphaera calvata steinmetz 
Discosphaera tubifer (Murray L Blackman) Ostenfeld 
Emiliania huxleyi (Lohmann) Hay L Mohler 
Florisphaera profunda Okada & Honjo 
Gephyrocapsa ericsonii McIntyre L B1 
Gephyrocapsa oceanica Kamptner 
Gephyrocapsa spp. 
Hayaster perplexus (Bramlette L Riedel) Bukry 
Helicosphaera carteri (Wallich) Kamptnec 
Helicosphaera hyalina Gaarder 
Neosphaera coccolithoeorpha Lecal-Schlauder 
Oolithotus fragilis (Lohmann) Okada L McIntyre 
Pontosphaera japonica (Takayama) Nishida 
Rhabdosphaera claviger Murray L Blackman 
Syracosphaera lamina Lecal-Schlauder 
Syracosphaera pulchra Lohmann 
Syracosphaera spp. 
Umbellosphaera irregularis Paasche 
Umbellosphaera tenuis (Kamptner) Paasche 
Umbilicosphaera hulburtiana Gaarder 
Umbilicosphaera sibogae (Weber-van Bosse) Gaarder 
Thoracosphaera heimii (Lohmann) Kamptner 
Thoracosphaera tuberosa Kamptner 

North Pacific East 
Roth P Coulbourn, 1982 China Sea 
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orial itional arctic Cheng,1985 
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0.01 

0.2 0.9 0.8* 
11.1* 

57.1 62.1 54.8* 
1.3 3.2 2.9* 

0.4 0.3* 0.2 
36.5 26.6 24.0* 

Table 3. Average relative abundancies and frequencies of nannofossils. 

C.  pelagicus 
0. caribbeanica 
C. leptoporus 
F. profunda 
E .  huxleyi 
0 .  sibogae 
H .  carteri 
(3. oceanica 
0 .  fragilis 
0 .  tenuis 
0 .  irregularis 
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0 
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10.42 
10.42 
8.33 
6.25 
16.67 
25.00 
29.17 
100.00 
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64.58 
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6.25 

27.08 
93.75 
29.17 
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77.08 
4.17 
64.58 
27.08 
91.67 
81.25 
64.58 
87.50 
20.83 
89.58 
33.33 
2.08 

0 . 5  0.4*  1.2 0.6 0.1 
0.5 0.4' 

2.2 1.5 0.1 0.1 I 2 - 6  I 0 . 6  0.5* 
1.9 

Table 4. Comparison of nannofossil assemblages in surface sediments of the South China Sea, the East China Sea (after Wang & Cheng, 1985) 
with those of the North Pacific (after Roth & Colbourn, 1982) (figures given in percent, *nannofossils counted with Florisplinern yrofirrzdn) 
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Table 5. Relative abundancies of nannofossils and 
percentages of sand and CaCO,. (Data on sand and 
CaC0,provided by Second Institute of Oceanography, 
SOA, China). 
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