The earliest leperditicope arthropod: a new genus from the Ordovician of Spitsbergen

MARK WILLIAMS & DAVID J. SIVETER
Department of Geology, University of Leicester, Leicester LE1 7RH, UK (e-mail: mri@le.ac.uk, djs@le.ac.uk)

ABSTRACT – A new leperditicope from the carbonate-dominated sequence of the Nordporten Member of the Kirtonryggen Formation, Spitsbergen, is the oldest confirmed representative of this group of bivalved arthropods. It occurs at a stratigraphical level low in the Floian Stage of the Early Ordovician, and below rocks bearing graptolites of the Pendeograptus fructicosus Biozone. Its occurrence emphasizes an ‘out of Laurentia’ palaeogeographical origin for leperditicopes, though there are no obvious antecedents in the earlier, Cambrian record of that palaeocontinent. J. Micropalaeontol. 27(2): 97–101, November 2008.

KEYWORDS: Ordovician, leperditicope arthropod, origins, Spitsbergen

INTRODUCTION
Leperditicopida are large bivalved arthropods typically 5–50 mm in length. Conventionally treated as ostracods (e.g. Whatley et al., 1993), their biological affinities are unclear, compounded by a lack of evidence from soft tissue preservation and the absence of post-Devonian representatives of the group (Vannier et al., 2001). Leperditicopids first become common in the Middle Ordovician of North America and Greenland (e.g. Poulsen, 1937; Harris, 1957, 1960; Berdan, 1976, 1984). From their earliest occurrences, in palaeocontinental Laurentia, leperditicopids spread to become global in the Silurian. Berdan (1984) summarized their stratigraphical distribution, taxonomic nomenclature and morphological characteristics. Here, a new and early occurrence of an isochilind leperditicope is reported from the Early Ordovician Nordporten Member of the Kirtonryggen Formation, Spitsbergen.

MATERIAL AND LOCALITY
The leperditicope material was collected from the Kirtonryggen Formation in north Ny Friesland, Spitsbergen, during fieldwork by Richard Fortey and David Bruton in 1971 (Fortey & Bruton, 1973; see Fig. 1). Outcrops of the Nordporten Member occur north and south of Buldrebreen, an arm of the Valhallfonna Glacier. The Nordporten Member is exposed along the shore of the northern outcrop and in the upper reaches of the Profilbekken (Fig. 1). In the southern area it forms a flat-topped mountain, Bordtoppen, and is partly exposed along stream sections inland along Olenidsletta. On the coast along Profilstrandha, Fortey & Bruton (1973, p. 2232) calculated that the thickness of the Nordporten Member is 220 m. The carbonate-dominated sequence of the Nordporten Member is fossiliferous throughout and includes trilobites, leperditicopids and nautiloids. Leperditicopids and ostracods are also present in the overlying Valhallfonna Formation (R.A. Fortey unpublished information).

STRATIGRAPHICAL SETTING: THE OLDEST LEPERDITICOPE
The Order Leperditicopida is divided into two families, the Isochilinidae Scott, 1961, with valves that are essentially equal-sized, and the Leperditiiidae Jones, 1856, with valves that are asymmetrical (see Berdan, 1984). Confirmed earliest occurrences of both families are in the Ordovician of North America, but records of isochilinds are the oldest (Berdan, 1984). The record of Leperditia harrisi Frederickson, 1946 from the Late Cambrian of Oklahoma is based on a single specimen figured only in outline (Frederickson, 1946, figs 1–3). As noted by Vannier et al. (2001), the shape of L. harrisi strongly suggests that it is not a leperditicope. The oldest yet described isochilind is Tirisochilina juabaria Berdan, 1976 from the Juab Limestone of Utah, and

Fig. 1. Geographical location of the leperditicope-bearing sequence in Spitsbergen (map after Fortey & Bruton, 1973, fig. 1). The leperditicopes are from the northern outcrop of the Nordporten Member.
was referred at the time it was described to an early ‘Chazyan’ horizon. A number of leperditicopes are also recorded from the immediately overlying Kanosh Shale (Berdan, 1976, text-fig. 2). The Juab Limestone is assignable to the *Psammolithus* trilobite Biozone (see Fortey & Droser, 1996), indicating an early ‘Whiterockian’ age, equivalent to the ‘Third Stage’ of Cooper & Sadler (2004). Leperditicopes are known from still earlier deposits in North America, particularly from the uppermost part of the West Spring Creek Formation in Oklahoma (Harris, 1957). This formation and its equivalents yield *Didymograptus protobifidus* (e.g. Decker, 1945) and probably have a latest Early Ordovician age (Overstreet et al., 2003; see Cooper & Sadler, 2004). Leperditicopes became very widespread in North America during the Middle and Late Ordovician (e.g. Harris, 1957; Swain, 1957; Berdan, 1984).

The new leperditicope from Spitsbergen occurs in the carbonate-dominated sequence of the Nordporten Member of the Kirtonryggen Formation, deposited in a shallow-marine shelf setting (Fortey & Bruton, 1973). The Nordporten Member immediately precedes the black graptolitic limestone and shale of the Olenidsletta Member of the Valhallfonna Formation, which bears graptolites assignable to the *Pendeograptus fructicosus* graptolite Biozone (see Fortey & Bruton, 1973; Cooper & Fortey, 1982; Maletz & Bruton, 2005). This indicates a level low in the Floian Stage of the Early Ordovician (‘Second Stage’ sensu Cooper & Sadler, 2004) and places the isochilind material from Spitsbergen as the oldest (c. 475 Ma) confirmed representative of the family and order. The closest taxon to the Spitsbergen material appears to be the North American *Kenodontochilina*, which occurs somewhat later in the Lexington Limestone, Ashlock and Bull Fork formations, Late Ordovician, Kentucky (Berdan, 1984).

The oldest supposed ostracods (Palaeocopida) are those from the Tremadocian of palaeocontinental Baltica (Tinn & Meidla, 2004), Gondwana (Salas et al., 2007) and the Gondwanan margins (Williams, M. Gobadi Pour and L. E. Popov, unpublished information). There are no Early Ordovician leperditicopes from Gondwana, and that group appears to be confined to Laurentia for the Ordovician (e.g. Williams et al., 2001) is supported by their apparent separate palaeocontinental origins.

ORIGINS OF THE LEPERDITICOPES

Vannier et al. (2001, p. 75) regarded records of leperditicopes from the Late Cambrian of North America to be doubtful and, indeed, Siveter & Williams (1997, p. 17) had earlier treated these in their discussion of the arthropod group Bradoriida. Copeland (1962) suggested an Early Ordovician isochilind antecedent for the Leperditiiidae that is consistent with the early occurrence of leperditicopes in Spitsbergen. However, there are currently no obvious antecedents for leperditicopes in the Tremadocian or Cambrian. Amongst the various bivalved arthropods referred to the Bradoriida (see Williams et al., 2007), some forms such as the Cambrian *Anabarochilina* have large bivalved carapaces, with equal-sized valves and a concentration of lobes anteriorly. Similar to some leperditicopes, they also possess anastomosing ridges extending out from the nodes that probably represent the trace of an integumental circulatory system (e.g. see Vannier et al., 1997; Hou et al., 2002). However, these features are plesiomorphic and are shared by a number of different arthropod groups (e.g. Vannier et al., 1997). Most importantly, no known bradoriid has a calcium carbonate carapace, or possesses the complex muscle scars that characterize the leperditicopes (Berdan, 1984). The origin of the leperditicopes remains enigmatic and may be resolved only by the discovery of specimens with soft anatomy preservation.

SYSTEMATIC PALAEOONTOLOGY

The terminology of the leperditicope carapace is that used by Berdan (1984) and Vannier et al. (2001; see Fig. 3). The specimens are housed in the collections of the Department of Palaeontology, Natural History Museum, London.

Phylum *Arthropoda* Siebold & Stannius, 1845
Class Uncertain
Order *Leperditicopida* Scott, 1961
Family *Isochilinidae* Swartz, 1949

Genus *Trinesos* gen. nov.
Type species. *Trinesos akroria* gen. et sp. nov.

Derivation of the name. *Trinesos*, from Greek, *trion* ‘three’ and *nesos* ‘island’. Fancied resemblance of the three nodes to islands.

Material. Eight disarticulated valves, ranging in length from 1.6 mm to 4.4 mm, and probably representing three or more growth stages (NHM OS 16535-16540).

Description. Isochilind with postplete outline and valves up to 4.4 mm long. Posterocardinal and anterocardinal angles pronounced. Well-developed sulcus in the adductorial position in the dorsal-most third of the valve. This sulcus subdivides the valve into broad and inflated posterior and anterior lobal areas. Three prominent lateral nodes are developed ventral of this sulcus: large (greater than 0.5 mm diameter in specimens longer than 3.5 mm long), circular submedian node situated dorsal of this node and slightly dorsally of the submedian node. Locking pits are developed from midventral to anteroventral region in the right valve. Marginal rim entire.

Remarks. The new genus is clearly referable to the Isochilinidae by its possession of a lateral rim and planar commissure (Berdan, 1984, p. 4). As noted by Berdan (1984, p. 4), isochilinds often bear ‘extreme’ lobation, though such ‘extremes’ also occur in some Leperditidae Jones, 1856, particularly *Sibiriella* Abushik (e.g. see Abushik *et al.*, 1989, pl. 3, fig. 22a).

Trinesos appears to belong to a group of multilobate Ordovician isochilinds that include *Kenodontochilina* Berdan, 1984 and *Saffordellina* (Ulrich & Bassler, 1923). Possession of three or more nodes clearly distinguishes this group from other isochilinds, including the type genus *Isochilina* Jones, 1858 and the closely related *Teichochilina* Swartz, 1949. The lobation of *Trinesos* most closely resembles *Kenodontochilina* from the Ordovician of eastern North America (e.g. ‘*Ctenobolbina clavigera*’; for which, see Copeland, 1958; Berdan, 1984). *Kenodontochilina* has valves with a distinct sulcus separating a median ‘boss’ from a well-developed anterodorsal eye tubercle. The position of both of these nodes in *Kenodontochilina* is more dorsal than in *Trinesos* and, in addition, *Kenodontochilina* bears up to two additional dorsal nodes posterior of the eye tubercle. The North American Ordovician *Saffordellina* also possesses a large submedian node, but has a number of additional lobes both anterior, dorsal and posterior of this, and a well-developed ridge running parallel to the valve margin from the anterodorsal to mid-posterior part of the valve (for illustrations of these taxa, see Berdan, 1984).

Many leperditicopes bear an adductor muscle scar and in *Kenodontochilina* this is situated on the large submedian ‘boss’. No muscle scars are preserved in the material of *Trinesos*, though this may be a factor of preservation, as in most cases the equivalent muscle scar-bearing node is abraded (Figs 4.1, 4.3, 4.7–4.9). However, a slightly raised ellipsoidal-shaped area, dorsal of the three nodes on the external surface and at the base of the sulcus, might reflect the point of attachment of the adductor muscle internally (Figs 4.1, 4.3, 4.5, 4.8).

Trinesos akroria sp. nov. (Figs 4.1–4.9)

Derivation of the name. Greek *akroria*, meaning ‘daybreak’, alluding to the early occurrence of this leperditicope.

Diagnosis. As for genus, which is monotypic.

Holotype. A right valve (Figs 4.1, 4.4), NHM OS 16535 (R.A. Fortey, field collection number F5494), 4.4 mm long.

Material. Eight disarticulated valves, ranging in length from 1.6 mm to 4.4 mm, and probably representing three or more growth stages (NHM OS 16535-16540).
valve surfaces; larger juveniles and adults have discrete, spaced pustules.

Remarks. *T. akroria* differs from all other species of isochilind in the development and position of its three well-developed lateral nodes. Although the lobation of *T. akroria* is unique, the species bears some similarity to *Kenodontochilina? clavigera* (Jones, 1891) from the Pamela Beds of the Ottawa Formation (see Copeland, 1958; Berdan, 1984). *K.? clavigera* has a well-developed sulcus and the anterior and posterior parts of the valve are divided into broad lobal surfaces (labelled ‘L1’ and ‘L3’ by Copeland, 1958). However, *K.? clavigera* has an additional sulcus (which is also evident in other species of *Kenodontochilina*, see Berdan, 1984, pl. 10) and the morphology of the nodes on the valve surface is quite different from that of *T. akroria*.

Elsewhere in the Arctic region, Middle and Late Ordovician leperditicopids have also been reported from the Narwhal Sound Formation (basal Whiterockian), Ella Island, and Wright Bay Formation (Ashgillian), Cape Calhoun, Washington Land, East and North Greenland respectively (Poulsen, 1937; Teichert, 1937), but these are Leperditiidae (Berdan, 1984; for relevant stratigraphy of East Greenland, see Smith et al., 2004).

ACKNOWLEDGEMENTS

The authors thank Jean Vannier (Lyon) and Maria José Salas (Córdoba, Argentina) for their constructive reviews of this paper. Mark Williams thanks Leicester University for study leave. Giles Miller (Natural History Museum) sourced a number of key references and Leonid Popov (National Museum of Wales) provided the paleogeographical reconstruction of Figure 2. Richard Fortey is also thanked for providing the materials for this study, and Adrian Rushton (Natural History Museum) is thanked for discussion.

Fig. 4. *Trinesos akroria* from the Nordporten Member, Kirtneyggen Formation, Spitsbergen. (1, 4) Holotype, RV lateral view, stereo-pair and close up of anteroventral margin respectively, NHM OS 16535 (field collection number F5494). (2) Latex cast of juvenile RV, lateral view, stereo-pair, NHM OS 16536. (3, 9) RV lateral view and close up of anteroventral part of valve, NHM OS 16537 (field collection number F5428). (5) RV lateral view, stereo-pair, NHM OS 16538. (6, 7) Close up of pustulose ornament and RV lateral view respectively, NHM OS 16539 (field collection number F5466). (8) RV lateral view, NHM OS 16540 (field collection number F5304). Scale bars are: 1, 6, 7=1 mm; 2, 5, 8=0.5 mm; 3, 9=0.7 mm; 4=1.5 mm.
REFERENCES

cent to Hinlopenstretet, North Ny Friesland, Spitsbergen. G

Manuscript accepted 12 December 2007

Contributions to Canadian Micropaleontology, part 3, no. 5: 59–99.
Siveter, D.J. & Williams, M. 1997. Cambrian bradoriid and phosphato-

Swain, F.M. 1957. Early middle Ordovician Ostracoda of the eastern United States. Part 1. Stratigraphic data and description of Leperditi-
Ulrich, E.O. & Bassler, R.S. 1923. Paleozoic Ostracoda; their morpho-