Middle to Late Pleistocene radiolarian biostratigraphy in the water-mixed region of the Kuroshio and Oyashio currents, northeastern margin of Japan (JAMSTEC Hole 902-C9001C)

KENJI M. MATSUZAKI1*, NORITOSHI SUZUKI1, HIROSHI NISHI2, REISHI TAKASHIMA2, YUMIKO KAWATE1 & TOYOSABURO SAKAII3

1Institute of Geology and Palaeontology, Graduate School of Science, Tohoku University Aramaki 6-3, Sendai 980-8578, Japan
2The Center for Academic Resources and Archives Tohoku University Museum, Tohoku University, Japan
3Geology Department, Faculty of Agriculture, Utsunomiya University, Japan

*Corresponding author (e-mail: kenji.m.r.matsuzaki@gmail.com)

ABSTRACT – A continuous Quaternary sediment sequence was recovered from Hole 902-C9001C during the D/V Chikyu 2006 mission along the northeastern margin of Japan. The age and rate of deposition of this core were estimated using calcareous nannofossil biostratigraphy and oxygen isotope curves measured from benthic foraminifera (Uvigerina akitensis) and dated from 740ka to the present, a period that spanned the Brunhes normal polarity epoch. Sediment consisted of diatomaceous siltstone and contained an abundance of radiolarians. A total of 91 radiolarian species was found in the core, of which 74 were analysed. Of these radiolarian species, 36 demonstrated continuous stratigraphical distribution over the past 740 ka and 38 had shorter ranges of biostratigraphical interest. Three of the 38 species were determined to be novel and are described in the present study (Amphisthapa taeniophora nov. sp., Schizodiscus japonicus sp. nov. and Siphonosphaera? paraphoros sp. nov.). Based on 17 radiolarian bioevents, including four datums which have been commonly used across a wide area of the North Pacific, the radiolarian sequence of this core was divided into 8 zones: Amphiprolamum virchowii Zone (613–740 ka), Spongaster tetras irregularis Zone (516–613 ka), Cyrtodiscus reticulata Zone (357–516 ka), Spongurus cylindricus Zone (238–357 ka), Pterocanium depressum Zone (209–238 ka), Spongoliva ellipsoides Zone (131–209 ka), Ceratopyxis problematica Zone (33–131 ka), and the Acanthodesmia venticula Zone (0–33 ka).

KEYWORDS: Radiolaria, biostratigraphy, Pleistocene, offshore Japan

INTRODUCTION

The region of the northwestern Pacific located along the northeastern margin of Japan is greatly affected by two warm currents (Kuroshio and Tsugaru currents), a cold current (Oyashio Current) and several deep-water masses. The mixture of nutrient-poor warm currents with nutrient-rich cold water has resulted in the presence of high-productivity water masses in the region, which are known to contain sediments rich in biosiliceous components. Sediments in the northwestern Pacific contain an abundance of well-preserved radiolarians, and radiolarian biostratigraphical schemes in the region have been proposed earlier by Sakai (1980), Kamikuri et al. (2004, 2007) and Motoyama et al. (2004). Three of the 38 species were determined to be novel and are described in the present study (Amphisthapa taeniophora nov. sp., Schizodiscus japonicus sp. nov. and Siphonosphaera? paraphoros sp. nov.). Based on 17 radiolarian bioevents, including four datums which have been commonly used across a wide area of the North Pacific, the radiolarian sequence of this core was divided into 8 zones: Amphiprolamum virchowii Zone (613–740 ka), Spongaster tetras irregularis Zone (516–613 ka), Cyrtodiscus reticulata Zone (357–516 ka), Spongurus cylindricus Zone (238–357 ka), Pterocanium depressum Zone (209–238 ka), Spongoliva ellipsoides Zone (131–209 ka), Ceratopyxis problematica Zone (33–131 ka), and the Acanthodesmia venticula Zone (0–33 ka).

MATERIALS AND METHODS

Core 902-C9001C was drilled at a water depth of 1180 m (41°10′38.28″N, 142°12′04.86″E) during the D/V Chikyu 2006 mission (Fig. 1). The core provided a continuous record from the marine isotope stage (MIS) 18 (750 ka) to the present, a period that spanned the Brunhes normal polarity epoch (0–740 ka). The age model of this core was established through measurement of the stable oxygen isotopes of benthic foraminifera and calcareous nannofossil datums (Domitsu et al. 2011) (Fig. 2). In total, 163 samples were examined for radiolarians. Samples were initially freeze-dried with an Advance V-F350 Vacuum Freezing Dryer. Dried samples were then disaggregated with hydrogen peroxide and diluted with hydrochloric acid. Undissolved residues within each sample were sieved using a 63 µm screen prior to being dried in an oven. Dried residues were subdivided evenly into several aliquots, and one aliquot was embedded with Canada Balsam and used to prepare microscopic slides. Observation of radiolarians was carried out at magnifications of 100–400× using optical microscopes. The studied material is deposited at the Tohoku University Graduate School of Science, Department of Geology and Paleontology.
Thorough examination of species composition within the 163 samples revealed a total of 91 species (3 collodarians, 51 spumellarians, and 37 nassellarians). Among these species, the stratigraphical distributions of 74 are presented in Figure 3. Forty-eight important species are illustrated (Pls 1–3) and their taxonomic references are listed in Table 1. Of these 48 species, 38 demonstrated sufficiently discontinuous distributions to be biostratigraphically useful. Among these 38 species, three are newly described in detail below.

Class Radiolaria Müller, 1859

Order Collodaria Haeckel, 1882, *sensu* Petrushevskaya, 1984

Genus Siphonosphaera Müller, 1859

Type species. *Siphonosphaera tubulosa* Müller, 1859. [Subsequent designation by Campbell, 1954.]

Siphonosphaera? paraphoros Matsuzaki & Suzuki sp. nov.

(Pl. 1, figs 1–4)

Derivation of name. Greek female noun, παραφορος, meaning confusing.

Diagnosis. A single cortical shell relatively irregular in shape, platy surface with two types of pores.

Holotype. Plate 1, figure 1; sample 902-C9001C, 10H-1, 45.5–54.5 m (Middle Pleistocene). Catalogue number IGPS 111417.

Distribution in the NW Pacific. Extant off Shimokita.

Description. A single irregular and platy surface cortical shell bearing two types of pores, the first group comprises several rounded polygonal pores of relatively larger size with a short centrifugal tube, and the second group a small number of irregular pores throughout the platy cortical shell. A hook-like spine is present on some of the larger rounded polygonal pores. No spines or significant projections are present on the cortical shell.

Dimensions. Based on four illustrated specimens: average diameter 135 ㎛, maximum diameter 180 ㎛ and minimum diameter 100 ㎛.

Occurrence. Continuous for the past 740 ka, living and fossil (this study).

Remarks. The main difference from *Acrosphaera spinosa* Haeckel, 1887 is the presence of a short centrifugal tube on each larger pore. This species is morphologically similar to members of the genus *Odontosphaera* Haeckel, 1887 in that a hook-like spine on some larger pores is present in this new species. However, the characteristic centrifugal tube is present on each larger pore, and thus we tentatively regard this new species as a member of *Siphonosphaera*.

Order Spumellaria Ehrenberg, 1876

Genus Amphiphaera Haeckel, 1882 emend. Suzuki *et al.*, 2009

Type species. *Amphiphaera (Amphiphaerantha) neptunus* Haeckel, 1887.

Amphiphaera tanzhiyuani Matsuzaki & Suzuki sp. nov.

(Pl. 2, figs 21–24)

1974 *Stylatractus pyriformis* (Bailey); Kruglikova: 188, 190, figs 2.2, 2.3 [only].

1982 *Amphistylus* sp. Tan & Su: 141–142, pl. 3, fig. 10.

1984 *Stylatractus* sp. Nishimura & Yamauchi: 34, pl. 5, fig. 11.
Radiolarian biostratigraphy in NE Japan

Fig. 2. Age model of core 902-9001C. The depositional age of core 902-9001C was established using oxygen isotope measured from benthic foraminifera (Domitsu et al. 2011), calcareous nannofossil datums (FO of Emiliania huxleyi (265 ka) and Pseudoemiliania lacunosa (450 ka)) and tephrostratigraphy datums (Spfa-1 (43 ka) and Aso-4 (87 ka)).

1992 Lithatractus tochigienisis Nakaseko [nomen nudum]; Alexandrovich: pl. 3, fig. 10.
1996 Stylatractus disetanius Haeckel; Chen & Tan: 177, pl. 11, figs 1–3; pl. 41, fig. 5.
2004 Stylosphaera hispida Ehrenberg; Okazaki et al.: pl. 2, figs 4, 5.
2005 ?Stylatractus pyriformis (Bailey); Abelmann & Nimmergut: pl. 7, fig. 19 [only].
Fig. 3. Biostratigraphical distribution of the 74 selected radiolarian species over the past 740 ka in 902-9001C. Age assignments of the radiolarian zones based on the age model of core 902-9001C (Domitsu et al. 2011). FO, first occurrence; LO, last occurrence; FCO, first continuous occurrence.
Radiolarian biostratigraphy in NE Japan

2008 Druppatractus ostracion Haeckel; Tanaka & Takahashi: pl. 1, fig. 13.

Derivation of name. The name *tanzhiyuan* is in honour of Dr Tan Zhiyuan, one of the authors of the classic paper, Tan & Su (1982), which figured this species.

Diagnosis. Three concentric shells marked by numerous radial beams bearing two long cylindrical bipolar spines.

Holotype. Plate 2, figure 21; sample 902-C9001C, 29H-1, 47–53 (Middle Pleistocene). Catalogue number IGPS 111418.

Distribution in the NW Pacific. Bering Sea, East China Sea, Sea of Japan, Nankai Trough, Sea of Okhotsk, South China Sea, east off Shimokita; living and fossil.

Description. Three concentric shells with two long, cylindrical, bipolar spines. Innermost shell is a spherical microsphere with numerous radial beams. The second shell is a spherical macrosphere with numerous radial beams. The third shell is the first cortical shell with a spherical or rather oblong spherical shape. The surface of the third shell is neither rough nor smooth. The wall of the first cortical shell is thick in the mature form and the wall thickness is equal everywhere. Pores are hexagonal in shape and are arranged as six to seven pores in both the longitudinal and equatorial axes of the cortical shell. The pore frame tends to be robust, but pores always appear to be visible even in mature forms. Bipolar spines are thin, generally equal in length and are cylindrical or subcylindrical in cross-section. The ratio of the diameters of the microsphere, macrosphere and cortical shell is 1:2.8–2.2:3.8–4.2. Radial beams connecting between the cortical shell and macrosphere are visible as black, solid bars under transmitted light microscopy.

Dimensions. Based on 10 specimens, for axial diameter, diameter at the external cortical shell equator and the maximum and minimum diameters of the inner shell. Minimum axial diameter is 70 µm whilst maximum is 100 µm; average axial diameter is 86 µm. External cortical shell’s equatorial diameter is between 70 and 90 µm and average is 78 µm. Inner shell maximum diameter fluctuates between 40 and 55 µm; average diameter is 51 µm. Minimum inner shell diameter ranges from 40 to 50 µm; average 42 µm.

Occurrence. From 451 to 0 ka at this site. Extant species.

Remarks. *Amphisphaera gracilis* Campbell & Clark, 1944 is similar to this morphotype, but the former differs from the latter by having significantly bladed bipolar spines. This morphotype has no similarity to *Stylosphaera hispida* Ehrenberg. *S. hispida* has only two shells, a pear-shaped macrosphere and an ellipsoid cortical shell. The pear-shaped macrosphere is connected to the cortical shell by six radial beams. This morphotype is occasionally misidentified as *Stylosphaera pyriformis* (Bailey), but is easily distinguished from the latter by having numerous thick radial beams between the cortical shell and the macrosphere and the presence of an ellipsoid macrosphere instead of a heteropolar macrosphere as in *S. pyriformis*.

Genus *Schizodiscus* Dogiel in Dogiel & Reshetnyak, 1952

Type species. *Schizodiscus disymmetricus* Dogiel in Dogiel & Reshetnyak, 1952. [Subsequent designation by Ling, 1972.]

Schizodiscus japonicus Matsuzaki & Suzuki sp. nov. (Pl. 2, figs 27–30)
1973 *Spongodiscus* sp. Ling: 778, pl. 1, figs 9, 10.
1975 *Spongodiscus* sp. Ling: pl. 4, fig. 5; Ling, 1980: 368, pl. 1, fig. 7.
1980 *Spongodiscus* sp. Sakai: 709, pl. 6, fig. 5.
2002 *Spongodiscus* sp. Matul et al.: 30, figs 4.3, 4.4.

Diagnosis. The diagnosis of this new species is fully cited in Ling (1973, p. 778). The morphological characters of this morphotype are concordant with the description of *Spongodiscus* sp. in Ling (1973): discoidal biconvex shell whose surface consists of an irregular network with circular to subcircular pores approximately uniform in size and a darker central part.

Holotype. Plate 2, figure 30; sample 902-C9001C, 20H-3, 62–68 (Middle Pleistocene).

Catalogue number IGPS 111419.

Distribution in the NW Pacific. Bering Sea, east off Sanriku, Sea of Okhotsk, east off Shimokita; fossil.

Description. Large inflated, opaque discoidal skeleton with flat sides presenting a porous structure. The pores are circular to subcircular and their sizes fluctuate between 8 and 11 µm. The central part of the disk is one-half to two-thirds of the diameter of the disc and appears darker than the rest of the shell, suggesting a thickening of the test. The diameter of this central part fluctuates from 70 to 100 µm and is also finely pored. The observed specimens were marked by an absence of spines while the siliceous microfossil preservation was good down-core. The absence of spines in the periphery of the skeleton is a strong taxonomic feature of *Schizodiscus japonicus*. The skeleton periphery is also marked by an absence of pylome for most of the encountered specimens; however, some specimens present a rounded tube-like aperture continuing inside the disk, close to a pylome, illustrated in Plate 2, figs 29–30.

Dimensions. Based on 20 specimens, average diameter is 237 µm; maximum size 260 µm and minimum 200 µm.

Occurrence. Middle Pleistocene only in this site.

Remarks. To establish the genus of this new species, comparisons were made with the type of the *Schizodiscus* genus which is *S. symetricus* Dogiel & Reshetnyak (1952). This genus is characterized by a convex, dark and thick central part and slightly inflated disk margins. The skeletons comprise a porous structure defined by small, circular to subcircular, almost uniform pores. The pylome tube is present and extends to the central dark part of the disk. Based on this description, *Schizodiscus japonicus* seems to conform to the generic definition proposed by Dogiel & Reshetnyak (1952), except that the pylome is ambiguous in...
this new species. Dogiel & Reshetnyak (1952) defined a clear tubiform pylome as a strong taxonomic feature that characterizes Schizodiscus. In our study (e.g. Pl. 2, figs 29–30), individuals were observed with a notch that can be associated with a pylome. However, this pylome feature is not observed in all the specimens (see Pl. 2, figs 27–28). Overall, the morphology of Schizodiscus japonicus seems to be close to Schizodiscus definitions and, based on present knowledge, this genus is the most suitable.

Schizodiscus japonicus differs from S. stylotrochoides Dogiel by the absence of the short, main spine system and coronet, and differs from S. spatangus Dogiel by the absence of numerous short spines distributed in the disc periphery. S. stylotrochoides Dogiel is marked by a coronet, several relatively thick and short spines, while S. spatangus Dogiel possesses numerous fine, short spines and an absence of coronet. Schizodiscus sp. A (Pl. 2, fig. 26) is distinguishable from S. japonicus by the presence of many equatorial radial spines originating from the central part of the test, a finer test pore frame, and the presence of a thin cover over the central to medial regions of the disk. S. japonicus is completely different from Spongodiscus biconcavus Haeckel, 1887 in having very coarse pores.

CHARACTERISTICS OF RADIOLARIAN ASSEMBLAGES

Biostratigraphical interpretation was carried out using fractions greater than 63 μm. Figure 3 shows the 74 species included in subsequent examination. The present study revealed that 36 of the species examined occurred throughout the examined intervals (over the past 740 ka), while the remaining 38 species showed discontinuous occurrences throughout those same intervals. The assemblages were dominated by the continuous occurrences of pylonoid spumellarians (including Larcopyle buetschlii Dreyer, 1889, Tetrarhynque octacantha group Müller, 1859, Phorticium pylomnium Jørgensen, 1899, Phorticium polycladum Tan & Tchang, 1976 and Tholospira cervicornis Haeckel, 1887), flat-shaped spumellarians (Stylochlamydium? venustum (Bayley & Tchang, 1976, Spongodiscus resurgens Ehrenberg, 1854, Schizodiscus japonicus sp. nov. and Spongodiscus helioides (Cleve, 1899)) and spherical spumellarians (including Actinomma boreale Cleve, 1899 and A. leptoder-smum Jørgensen, 1899)). Episodic occurrences of three flat, triangular-shaped radiolarians, Dictyocoryne profunda Ehrenberg, 1873a, D. truncatum (Ehrenberg, 1862) and D. muel-leri (Haeckel, 1862), and one spherical species, Halisieria microenica (Campbell & Clark, 1944), were also observed. In contrast to the high species diversity of Spumellaria, the diversity of Nassellaria appeared low. Both Cycladophora davisiana Ehrenberg, 1862 and Ceratospyris? borealis (Bayley, 1856) occurred throughout the intervals examined. Based on the distribution of the 74 species examined, 12 bioevents within core 902-C9001C were recognized as biorstratigraphically useful (Fig. 3).

First occurrence (FO) datums were detected at

- 613 ka (FO of Spongaster tetras Ehrenberg, 1862 irregularis Nigrini, 1967),
- 516 ka (FO of Cyrtodiscus reticularus (Haeckel, 1861a),
- 451 ka (FO of Amphipora tanzhiyuani sp. nov.),
- 259 ka (FO of Pterocanium depressum Ehrenberg, 1873a),
- 209 ka (FO of Spongopila ellipsoides Poposky, 1912), and
- 131 ka (FO of Ceratospyris problematica (Dogiel in Petrush-evskaya, 1969)).

A first continuous occurrence (FCO) datum was recorded at 17 ka (for Acanthodesmia vinculata (Müller, 1859)) and five last occurrence (LO) datums were identified at

- 357 ka (LO of Aaxonnum acquilonium (Hays, 1970)),
- 238 ka (LO of Schizodiscus japonicus sp. nov.),
- 219 ka (LO of Pterocanium depressum),
- 86 ka (LO of Schizodiscus sp. A), and
- 33 ka (LO of Lychocanoma sakaii Morley & Nigrini, 1995).

The relative abundance of L. sakaii changed significantly throughout this core and provided five additional datums: three abundance peaks at 229, 207 and 61 ka, a rapid increase datum at 240 ka and a rapid decrease datum at 55 ka.

RADIOLARIAN BIOEVENTS

In the present study 12 bioevents were identified over the past 740 ka. Of these events, nine were identified for the first time in core 902-C9001C (Fig. 5), while the remaining three events had been identified previously as useful datums within the northwestern Pacific. Table 2 summarizes the stratigraphical horizons of the 12 bioevents and their correlative numerical ages with oxygen isotope stratigraphy. The correlation of datums with other regions is described in detail below.

Last occurrence datum of Aaxonnum acquilonium (357 ka)

A. acquilonium has been recorded only in North Pacific sediment (e.g. Hays, 1970; Morley et al. 1995), including the Bering and Japan seas (Ling, 1973) and the Sea of Okhotsk (Matul et al. 2002). Hays (1970) and Ling (1973) noted that the relative abundance of this taxon never exceeded 5% in the Lower to Middle Pleistocene intervals. The LO datum of this taxon was identified at 310 ka in the North Pacific (Hays, 1970), at around 330 ka in the northwestern Pacific (Morley et al. 1995) and at 329 ka in the Sea of Okhotsk (Matul et al. 2002). The LO of A. acquilonium in the present study was located between sample 23H-5, 54–60 cm (208.97 mbsf) and sample 24H1-1, 25–31 cm (213.16 mbsf) at 357 ka (Table 2). The LO of A. acquilonium identified in the present study appeared to be roughly synchronous with the LO previously identified in the northwestern Pacific, revealing a time gap of less than 27 ka.
Last occurrence datum of **Schizodiscus japonicus** (238 ka)

Schizodiscus japonicus sp. nov. has long been referred to as *Spongodiscus* sp. (e.g., Ling, 1973) and its LO has been recognized in the Middle Pleistocene at sites in the northwestern Pacific (Ling, 1973; Sakai, 1980; Matul et al., 2002). The numerical age of this datum was roughly estimated at 290 ka by Matul et al. (2002) in the Sea of Okhotsk. Based on benthic foraminiferal oxygen isotopic stratigraphy, the LO age at the site examined in the present study was estimated at 238 ka (Fig. 5), which revealed a time gap of 62 ka between this site and the site examined by Matul et al. (2002). These results left no doubt that the LO of *S. japonicus* was located in the upper Middle Pleistocene at sites in the North Pacific.

Stratigraphical events of *Lychnocanoma sakaii*

The LO of *L. sakaii* was the most recent of the radiolarian bioevents identified from larger radiolarian fractions (>63 µm) in the North Pacific (Sakai, 1980). According to Sachs (unpublished thesis, Brown University, 1973), this datum served as a useful bioevent in Pleistocene deep-sea sediments. In this section the *L. sakaii* curve will be presented as a stratigraphical proxy based on Figure 4.

1. **Rapid decrease datum (50 ka) and last occurrence datum (33 ka) of *L. sakaii***

The FO of *L. sakaii* was not detected in core 902-C9001C as the base of the core is only 740 ka, and the FO of *L. sakaii* is recognized at 1.6 Ma by both Morley & Nigrini (1995) and Kamikuri (2010). The LO of *L. sakaii* was detected here in the interval between sample 3H-4, 42–48 cm (20.91 mbsf) and sample 3H-6, 50–56 cm (23.74 mbsf), which corresponds to 33 ka (Table 1). According to several previous studies (Robertson, unpublished thesis, Columbia University, 1975; Morley & Nigrini, 1995; Kamikuri, 2010), the LO of this species was dated at 50 ka, while Matul et al. (2002) dated the LO of *L. sakaii* at 29 ka in the Sea of Okhotsk, and Morley & et al. (1982) dated the LO between 16.7 and 34 ka. The LO of the species identified in the present study appeared to be similar to the LOs identified by Morley et al. (1982) and Matul et al. (2002). The long time gap between our *L. sakaii* LO datum of 33 ka and that identified in the records of Robertson (unpublished thesis, Columbia University, 1975), Morley & Nigrini (1995) and Kamikuri (2010) at around 50 ka requires examination. This date is almost the same as that at which the present study identified a rapid decrease datum (RD, Fig. 4). This phenomenon could have been plausibly interpreted as a LO in a low resolution study, while in a high resolution study – as the present study and that of Matul et al. (2002) – the RD datum and LO appear as two distinct events.

2. **Rapid increase datum (240 ka) and abundance peaks (61, 207 and 229 ka) of *Lychnocanoma sakaii***

As shown in Figure 4, the change in relative abundance of *L. sakaii* was so significant that the rapid increase (RI) datum and abundance peaks (AP) of this species were potentially applicable to biostratigraphical correlation with adjacent regions. This significance had already been noted for the North Pacific by Sachs (unpublished thesis, Brown University, 1973); however, in that study, *L. sakaii* was identified as *Lychnocanoma grande* Campbell & Clark, 1944. In the present study, one RID and three APs higher than 10% of the total assemblages were identified at 240, 229, 207 and 61 ka, respectively (Fig. 4, Table 3). The highest relative abundance peak of *L. sakaii* during the last 740 ka (AP3) was located at 61 ka during the early MIS 4. This event was detected at 60 ka in the northwestern Pacific by Robertson (unpublished thesis, Columbia University, 1975) and Sachs (unpublished thesis, Brown University, 1973), while Matul et al. (2002) recorded a high abundance peak for *L. sakaii* in the Sea of Okhotsk at 72 ka. *L. sakaii* AP3 appears to be a suitable age tie point in the northwestern Pacific.

RADIOLARIAN ZONATION

As documented in the previous sections, 12 bioevents were detected in 902-C9001C (Fig. 3). Among these bioevents, nine were recognized for the first time in core 902-C9001C (FOs of *Spongaster tetras irregularis*, *Cystodiscus reticulatus*, *Amphiphaera tanziyi*, *Pterocanum depressum*, *Spongoliva ellipsoideae* and *Ceratospyris problematica*; FCO of *Acanthodesmia vinculata*; LOs of *Axoprunum acutulum* and *Schizodiscus sp.* A). Among these nine bioevents, seven define eight new radiolarian interval zones at the Shimokita site (Fig. 3). The LO of *Schizodiscus sp.* A was not selected as a zonal marker since identification proved difficult due to its strong morphological similarities with other species, although *Schizodiscus japonicus* is separated from other *Schizodiscus* species by the absence of radial spines around the disk and significant light contrast between the central part and its adjacent exterior thinner part of the disk (Dogiel & Reshetnyak, 1952; Petrushevskaya, 1968). The remaining bioevents could potentially be used subordinate for refinement and confirmation of age determinations using the zones proposed in the present study.
Radiolarian biostratigraphy in NE Japan
Amphirhopalum virchowii Interval Zone (bottom of core–613 ka)

Definition. Base of zone is not defined. Top of zone defined by base of Spongaster tetras irregularis Interval Zone.

Faunal character. The assemblage is marked by continuous occurrences of Tetrapyle octacantha, Larcopyle buetschlii, Stylochlamydium? venustum and Cycladophora davisianna.

Interval and age. The stratigraphical interval between sample 40H-10 at 55–61 cm (362 mbsf) and 35X-5 at 47–53 cm (316 mbsf) in the 902-C9001C core. This zone covers the period from the core base to 613 ka.

Spongaster tetras irregularis Interval Zone (613–516 ka)

Definition. Base of zone defined by FO of Spongaster tetras irregularis. Top of zone defined by base of Cyrtidosphaera reticulata Interval Zone.

Faunal character. Assemblage is marked by the continuous occurrence of Tetrapyle octacantha, Larcopyle buetschlii, Stylochlamydium? venustum and Cycladophora davisianna, as in the previous zone. The FOs of Spongosphaera streptacantha and Eucryphalus cerus are placed in this zone.

Interval and age. The stratigraphical interval between sample 35X-5, 47–53 cm (316 mbsf) and 31H-2, 25–31 cm (275 mbsf) in the 902-C9001C core. This zone covers the period from 613 to 516 ka.

Remarks. The FO of Spongaster tetras irregularis is recorded at the top of the Styloatraeus universus Zone (Lower Pleistocene–Middle Pleistocene) in Morley (1985). In our site, this datum is found in MIS 15.

Cyrtidosphaera reticulata Interval Zone (516–357 ka)

Definition. Base of zone defined by the FO of Cyrtidosphaera reticulata. Top of zone defined by the base of Spongurus cylindricus Interval Zone.

Faunal character. The assemblage is marked by the continuous occurrence of Tetrapyle octacantha, Larcopyle buetschlii, Stylochlamydium? venustum and Cycladophora davisianna from the Amphirhopalum virchowii Zone. The FO of Amphisphaera tanzhiyuan sp. nov (451 ka) is placed in this zone, but it cannot be used as a biostatigraphical marker because of limited geographical coverage.

Interval and age. The stratigraphical interval between sample 31H-2 at 25–31 cm (275 mbsf) and 23H-5 at 54–60 cm (208 mbsf) in the 902-C9001C core. This zone covers the period from 516 to 357 ka.

Spongurus cylindricus Interval Zone (357–238 ka)

Definition. Base of zone defined by the LO of Axoprunum aquilonium. Top of zone defined by the base of Pterocanium depressum Interval Zone.

Faunal character. The characteristic species in this zone are the same as in the Spongaster tetras irregularis Zone. In addition, the first occurrence (FO) of Pterocanium depressum (259 ka) is the key marker of this zone.

Interval and age. The stratigraphical interval between sample 23H-5 at 54–60 cm (208 mbsf) and 17H-2 at 24–30 cm (149.8 mbsf) in the 902-C9001C core. This zone covers the period from 357 to 238 ka.

Pterocanium depressum Interval Zone (238–209 ka)

Definition. Base of zone defined by the LO of Schizodiscus japonicas sp. nov.. Top of zone defined by the base of Spongoliva ellipsoides Interval Zone.

Faunal character. The important taxa are the same as in the previous zones, except for the disappearance of Pterocanium depressum (LO at 219 ka), Schizodiscus japonicas sp. nov. (LO at 238 ka), Amphirhopalum virchowii and Amphisphaera tanzhiyuan sp. nov. within this zone (Fig. 5).

Interval and age. The stratigraphical interval between sample 18H-4 at 42–48 cm (163.04 mbsf) and 13H-6 at 40.5–49.5 cm (118 mbsf) in the 902-C9001C core. This zone covers the period from 238 to 209 ka.

Remarks. The last occurrence of Amphirhopalum virchowii is not the true extinction event world-wide, because this species is extant based on the type locality of specimens collected from modern seawater (Sakai et al. 2009).

Spongoliva ellipsoides Interval Zone (209–131 ka)

Definition. Base of zone defined by the FO of Spongoliva ellipsoides. Top of zone defined by base of Ceratospyris problematica Interval Zone.

Faunal character. The assemblage is characterized by the same species as in the previous zones, except for the occurrence of Cleveipleura borealis, Spongoliva ellipsoides and Pylodiscus triangulus (Fig. 3).

Interval and age. The stratigraphical interval between sample 13H-6 at 40.5–49.5 cm (118 mbsf) and 8H-6 at 42–48 cm (70.85 mbsf) in the 902-C9001C core. This zone covers the period from 209 to 131 ka.
Radiolarian biostratigraphy in NE Japan
Table 1. Species list and authors of the biostratigraphically important radiolarian species in core 902-9001C.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Plates & figures</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collodaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphonosphaera? paraphoros sp. nov.</td>
<td>Plate 1, figs 1–4</td>
<td>This study</td>
</tr>
<tr>
<td>Spumellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinomma boreale Cleve</td>
<td>Plate 1, fig. 5</td>
<td>Cleve (1899, p. 26, pl. 1, figs 5c, d)</td>
</tr>
<tr>
<td>Actinomma leptodermum (Jørgensen)</td>
<td>Plate 1, fig. 6</td>
<td>Jørgensen (1899, pp. 57–58); Nishimura & Yamauchi (1984, pp. 21–22, pl. 8, figs 7, 11); Itaki et al. (2012, pl. 3, fig. 3)</td>
</tr>
<tr>
<td>Rhizosphaera mediana (Nigrini)</td>
<td>Plate 1, fig. 7</td>
<td>Nigrini (1967, pp. 27–29, pl. 2, figs 2a, b); Levyikina (1986, p. 97, pl. 16, fig. 11)</td>
</tr>
<tr>
<td>Spumellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siphonosphaera? paraphoros sp. nov.</td>
<td>Plate 1, figs 1–4</td>
<td>This study</td>
</tr>
<tr>
<td>Spongosphaera streptacantha Haeckel</td>
<td>Plate 1, fig. 14</td>
<td>Haeckel (1861b, pp. 840–841); Sakai et al. (2009, p. 52, pl. 1, fig. 8, pl. 3, fig. 10, pl. 7, fig. 1, pl. 8, fig. 8, pl. 11, fig. 11, pl. 13, figs 1–9)</td>
</tr>
<tr>
<td>Nassellaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botryopera aff. chlamida Petrushevskaya</td>
<td>Plate 3, fig. 1</td>
<td>Petrushevskaya (1975, p. 592, pl. 20, figs 5, 6)</td>
</tr>
<tr>
<td>Archiperidium pentacanthum (Pоповский) comb. nov.</td>
<td>Plate 3, fig. 2</td>
<td>Pоповский (1913, pp. 366–368, pl. 32, figs 5, 6, text-figs 84–86)</td>
</tr>
<tr>
<td>Cryptogyrus araneaefera (Pоповский)</td>
<td>Plate 3, fig. 3</td>
<td>Pоповский (1908, pp. 273–274, pl. 30, fig. 1)</td>
</tr>
<tr>
<td>Cryptogyrus dubius (Dogiel in Dogiel & Reshetnyak) comb. nov.</td>
<td>Plate 3, fig. 4</td>
<td>Dogiel in Dogiel & Reshetnyak (1952, pp. 19–20, text-fig. 12)</td>
</tr>
</tbody>
</table>

Continued
Table 1. (Continued)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Plates & figures</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthodesmia vinculata (Müller)</td>
<td>Plate 3, fig. 7</td>
<td>Müller (1856, p. 484); Ling (1972, pl. 2, fig. 6)</td>
</tr>
<tr>
<td>Ceratospyris? borealis Bailey</td>
<td>Plate 3, fig. 8</td>
<td>Bailey (1856, p. 3, pl. 1, fig. 3); Itaki & Bjørklund (2007, pp. 450–451, pl. 1, figs 3–5, 6 [lectotype])</td>
</tr>
<tr>
<td>Ceratospyris problematica (Dogiel)</td>
<td>Plate 3, fig. 9</td>
<td>Dogiel in Petrushevskaya (1969, p. 134, pl. 1, fig. 6)</td>
</tr>
<tr>
<td>Cycladophora davisciana Ehrenberg</td>
<td>Plate 3, figs 10–12</td>
<td>Ehrenberg (1873b, pp. 288–289, pl. 2, fig. 11); Suzuki et al. (2009a, pl. 41, fig. 3, pl. 42, figs. 5, 9 [Type specimen, Ehrenberg Collection])</td>
</tr>
<tr>
<td>Lipmanella irregularis (Cleve)</td>
<td>Plate 3, fig. 13</td>
<td>Cleve (1899, pp. 32–33, pl. 4, fig. 1); Sugiyama et al. (1992, pl. 24, fig. 1)</td>
</tr>
<tr>
<td>Theocorythium trachelium (Ehrenberg)</td>
<td>Plate 3, fig. 14</td>
<td>Ehrenberg (1861, p. 768); Suzuki et al. (2009a, pl. 55, fig. 4 [Type specimen, Ehrenberg Collection])</td>
</tr>
<tr>
<td>Ceratocyrtyis spinosiretis (Takahashi) comb. nov.</td>
<td>Plate 3, fig. 15</td>
<td>Takahashi (1991, p. 110, pl. 34, figs 1, 2, 7); Itaki (2009, p. 52, pl. 19, figs 3–10)</td>
</tr>
<tr>
<td>Lamprocyclas maritilis Haeckel</td>
<td>Plate 3, fig. 16</td>
<td>Haeckel (1887, p. 1390, pl. 74, figs 13, 14); Renz (1976, p. 145, pl. 6, fig. 26)</td>
</tr>
<tr>
<td>Pterocanium depressum (Ehrenberg)</td>
<td>Plate 3, fig. 17</td>
<td>Ehrenberg (1873a, p. 316); Ehrenberg (1873b, pp. 296–297, pl. 10, fig. 1); Suzuki et al. (2009a, pl. 72, fig. 3 [lectotype])</td>
</tr>
<tr>
<td>Lychnocanama sakaii Morley & Nigrini</td>
<td>Plate 3, figs 18–19</td>
<td>Morley & Nigrini (1995, pp. 80–81, pl. 6, figs 1, 4)</td>
</tr>
</tbody>
</table>

Remarks. Spongoliva ellipsoides is commonly reported from various tropical to mid-latitudinal regions globally, but the range of this species is poorly documented except for our report.

Ceratospyris problematica Interval Zone (131–33 ka)

Definition. Base of zone is defined by the FO of *Ceratospyris problematica*. Top of zone defined by the base of the *Acanthodesmia vinculata* Interval Zone.

Faunal character. This zone is characterized by several bioevents, such as the LO of *Schizodiscus* sp. A. (86 ka), AP3 of *Lychnocanama sakaii* (61 ka), RD of *L. sakaii* (55 ka) and LO of *L. sakaii* (33 ka).

Interval and age. The stratigraphical interval between sample 8H-6 at 42–48 cm (70.85 mbsf) and 3H-4 at 42–48 cm (20.91 mbsf) of the 902-C9001C core. This zone covers the period from 131 to 33 ka.

Remarks. *Ceratospyris problematica* has not been identified from other regions previously, except for the original description by Petrushevskaya (1969). We confirm this species here and its stratigraphical range (Fig. 5).

Acanthodesmia vinculata Interval Zone (33–0 ka)

Definition. Base of zone defined by the LO of *Lychnocanoma sakaii*. Top of zone not defined – top of the core (0 mbsf).

Faunal character. All the species that occur in the previous zone are found in this zone. The FCO of *Acanthodesmia vinculata* (17 ka) and the reappearance of *Amphisphaera tanzhuyuani* sp. nov. occur in this interval zone.

Interval and age. The stratigraphical interval between sample 3H-4 at 42–48 cm (20.91 mbsf) and the top of core 902-C9001C (0 mbsf). This zone covers the period from 33 to 0 ka.

Remarks. *Acanthodesmoidea vinculata* is well recorded in the Upper Pleistocene sediments (Nishimura & Yamauchi, 1984; Bjørklund & de Ruiter, 1987).

CORRELATION OF RADIOLARIAN BIOEVENTS IN THE NORTHWESTERN PACIFIC SINCE THE MIDDLE PLEISTOCENE

Based on thorough examination of the distribution of radiolarian species within the 902-C9001C core, eight radiolarian regional zones are proposed for the past 740 ka within the Shimokita region (northwestern Pacific off the east coast of northern Japan). As seven bioevents in this region were first recognized in the present study, direct comparison with previously established zones in the North Pacific was necessary to locate these new radiolarian zones against the North Pacific standard radiolarian zonation for the Quaternary period established by Kamikuri et al. (2004, 2007) and Motoyama et al. (2004). These studies proposed a Neogene radiolarian biostratigraphy for the North Pacific in which the Middle to Upper Pleistocene comprised only two radiolarian zones: the *Stylatractus universus* Zone and the *Botryocystus aquilonaris* Zone, which were defined by the LO of *Eucyrtidium matuyamai* at 1050 ka and by the LO of *S. universus* at 430 ka, respectively (e.g. Motoyama et al. 2004; Fig. 5). In the present study, a major problem regarding these last datums was identified, as *S. universus* was not recorded at the study site, despite the fact that the LO of *S. universus* has been established as the tie point in the Middle Pleistocene within the North Pacific. This absence indicates that this datum is not always applicable in regions within the North Pacific, and that updates to the North Pacific radiolarian zonation are necessary in order to determine the regional suitability of each datum. Figure 5 shows the updates in which the radiolarian zones identified in the present study have been compared to the East Japan radiolarian zonations (after Motoyama et al. 2004; Motoyama et al. 2007) and the Sea of Okhotsk radiolarian zonation (after Matul et al. 2002). The *S. universus* Zone established by Motoyama et al. (2004), which was defined by the LO of *E. matuyamai* at 1050 ka (Base) and by the LO of *S. universus* at 430 ka (Top), was correlated with the *A. acquilonium* Zone established by Matul et al. (2002). The LO of *A. acquilonium* defined the top of this zone at 330 ka. Matul et al. (2002) determined that *S. universus* was not present in the
Fig. 4. *Lychnocanoma sakaii* abundance curve serving as a possible stratigraphical tool in the northwestern Pacific. Rapid increase (RI) at 240 ka, rapid decrease (RD) at 55 ka, and the three highest abundances peaks at 229 ka (AP1), 207 ka (AP2) and 61 ka (AP3) serving as alternative stratigraphical proxies in the northwestern Pacific. LOD, last occurrence datum.

Table 2. Radiolarian events in the northwestern Pacific (core 902-9001C).

<table>
<thead>
<tr>
<th>Radiolarian event</th>
<th>Core section, interval (cm)</th>
<th>Depth (mbsf)</th>
<th>Age (ka)</th>
<th>Position in the chemostratigraphy (MIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCO Acanthodesmia vinculata</td>
<td>2H-5, 71–77</td>
<td>12.96</td>
<td>17</td>
<td>Late MIS 2/MIS 1 boundary</td>
</tr>
<tr>
<td>LO Lychnocanoma sakaii</td>
<td>2H-6, 65–71</td>
<td>14.36</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>LO Schizodiscus sp. A</td>
<td>3H-4, 42–48</td>
<td>20.91</td>
<td>29</td>
<td>late MIS 3</td>
</tr>
<tr>
<td>LO Schizodiscus sp. A</td>
<td>3H-6, 50–56</td>
<td>23.74</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>FO Ceratospyris problematica</td>
<td>6H-5, 45.5–54.5</td>
<td>50.6</td>
<td>83</td>
<td>late MIS 5</td>
</tr>
<tr>
<td>FO Ceratospyris problematica</td>
<td>6H-6, 45.5–54.5</td>
<td>51.93</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>FO Spongoliva ellipsoides</td>
<td>8H-6, 42–48</td>
<td>70.85</td>
<td>131</td>
<td>MIS 5/MIS 6 boundary</td>
</tr>
<tr>
<td>FO Spongoliva ellipsoides</td>
<td>9H-2, 45.5–54.5</td>
<td>75.16</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>FO Pterocanium depressum</td>
<td>13H-6, 40.5–49.5</td>
<td>118.37</td>
<td>209</td>
<td>middle MIS 7</td>
</tr>
<tr>
<td>FO Pterocanium depressum</td>
<td>13H-7, 35.5–44.5</td>
<td>119.62</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>LO Schizodiscus japonicus</td>
<td>14H-6, 67–73</td>
<td>128.18</td>
<td>218</td>
<td>middle MIS 7</td>
</tr>
<tr>
<td>LO Schizodiscus japonicus</td>
<td>14H-7, 47–53</td>
<td>129.27</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>LO Schizodiscus japonicus</td>
<td>17H-2, 24–30</td>
<td>149.8</td>
<td>237</td>
<td>MIS 7/MIS 8 boundary</td>
</tr>
<tr>
<td>LO Schizodiscus japonicus</td>
<td>17H-3, 37–43</td>
<td>154.5</td>
<td>238</td>
<td></td>
</tr>
<tr>
<td>FO Pterocanium depressum</td>
<td>18H-4, 42–48</td>
<td>163.04</td>
<td>259</td>
<td>MIS 8</td>
</tr>
<tr>
<td>FO Pterocanium depressum</td>
<td>19H-2, 35–41</td>
<td>178.36</td>
<td>268</td>
<td></td>
</tr>
<tr>
<td>LO Axoprunum acqualium</td>
<td>23H-5, 54–60</td>
<td>208.97</td>
<td>350</td>
<td>Late MIS 10</td>
</tr>
<tr>
<td>LO Axoprunum acqualium</td>
<td>24H-1, 25–31</td>
<td>213.16</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>FO Cyrtidosphaera reticulata</td>
<td>27H-5, 47–53</td>
<td>244.72</td>
<td>455.36</td>
<td></td>
</tr>
<tr>
<td>FO Cyrtidosphaera reticulata</td>
<td>31H-2, 25–31</td>
<td>275.79</td>
<td>516</td>
<td>middle MIS 13</td>
</tr>
<tr>
<td>FO Cyrtidosphaera reticulata</td>
<td>31H-7, 47–53</td>
<td>281.82</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>FO Spongaster tetras irregularis</td>
<td>35X-5, 47–53</td>
<td>316.21</td>
<td>613</td>
<td>early MIS 15</td>
</tr>
<tr>
<td>FO Spongaster tetras irregularis</td>
<td>35X-7, 47–53</td>
<td>318.74</td>
<td>621</td>
<td></td>
</tr>
</tbody>
</table>

FOD, first occurrence datum; LO, last occurrence datum; FCO, first continuous occurrence.
Radiolarian biostratigraphy in NE Japan

<table>
<thead>
<tr>
<th>Age (ka)</th>
<th>Quaternary</th>
<th>Shimokita radiolarian Zone</th>
<th>Shimokita radiolarian datums</th>
<th>Okhotsk Sea radiolarian Zone</th>
<th>Okhotsk Sea radiolarian datums</th>
<th>Sanriku radiolarian Zone</th>
<th>Sanriku radiolarian datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>Early</td>
<td>Acanthodesmisina vincula</td>
<td>FO Cyrtodosphaera reticulata</td>
<td>FO Lychnocanoma sakai</td>
<td>FO Lychnocanoma sakai</td>
<td>FO Lychnocanoma sakai</td>
<td>FO Lychnocanoma sakai</td>
</tr>
<tr>
<td>0.1</td>
<td>Late</td>
<td>Ceratospyris problematica</td>
<td>FO Spongoliva ellipsoides 209ka</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>Schizodiscus japonicus</td>
<td>FO Schizodiscus japonicus 238ka</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td>Acanthodesmisina vincula</td>
<td>FO Lychnocanoma sakai</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>Ceratospyris problematica</td>
<td>FO Lychnocanoma sakai</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>Spongoliva ellipsoides 209ka</td>
<td>FO Spongoliva ellipsoides 209ka</td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>Schizodiscus japonicus</td>
<td>FO Schizodiscus japonicus 238ka</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td>Acanthodesmisina vincula</td>
<td>FO Lychnocanoma sakai</td>
</tr>
</tbody>
</table>

Fig. 5. Updated Middle to Upper Pleistocene Quaternary radiolarian biostratigraphic schemes in the northwestern Pacific based on comparisons between radiolarian biostratigraphic schemes determined in the present study (Shimokita) and those identified in the Sea of Okhskost (Matul et al. 2002) and the East Japan Sanriku region (Motoyama et al. 2004). FO, first occurrence datum; LO, last occurrence datum.
Sea of Okhotsk. The A. acquilonium Zone correlated with three of the radiolarian zones identified in the present study. An A. virchowii Zone (c. 613 ka), which would cover the lower part of the A. acquilonium Zone, as defined by Matul et al. (2002), could serve to cover this interval. The middle part of the A. acquilonium Zone established by Matul et al. (2002) correlates with the S. tetras irregularis Zone (613–516 ka) herein (Fig. 5). The C. reticulata Zone (516–357 ka) covers the top of the A. acquilonium Zone of Matul et al. (2002). The LO of A. acquilonium determined at our study site (357 ka) was relatively synchronous with the LO of the same species observed in the Sea of Okhotsk (330 ka).

The B. aquilonaris Zone of Motoyama et al. (2004) and defined by the LO of S. universus at 430 ka correlates with four radiolarian zones in the Sea of Okhotsk (Matul et al. 2002); in the present study the B. aquilonaris Zone correlates with five radiolarian zones. The base of the B. aquilonaris Zone correlated with the Spongodiscus sp. Zone established by Matul et al. (2002), which was defined by the LO of A. acquilonium (330 ka) (Base) and the LO of Spongodiscus sp. (Schizodiscus japonicus sp. nov.) at 290 ka (Top). The Spongodiscus sp. Zone of Matul et al. (2002) correlates with the Spongourus cyclindrica Zone (357–259 ka) newly established in the present study, which was defined by the interval between the LO of A. acquilonium (357 ka) and the base of the P. depressum Zone (238 ka) (Fig. 5). The middle part of the B. aquilonaris Zone correlates with the Amphimelissa setosa Zone established by Matul et al. (2002) in the Sea of Okhotsk as defined by the LO of Spongodiscus sp. at 290 ka and the LO of A. setosa at 72 ka (Fig. 5). This only correlated with the zones identified in the present study in an indirect manner, as A. setosa was not included in our analysis due to its small size (<60 μm). Based on the numerical ages of Domitsu et al. (2011), it was determined that the A. setosa Zone would correlate with the P. depressum Zone (238–209 ka) in C9001C. The base of the P. depressum Zone was defined by the LO of Schizodiscus japonicus (238 ka). A time gap of nearly 50 ka existed between the LOs of S. japonicus sp. nov. (Spongodiscus sp. in Matul et al. 2002) determined at the present study site and in the Sea of Okhotsk (Matul et al. 2002). This time gap demonstrates that the LOs of S. japonicus sp. nov. at these two sites were not synchronous. The middle part of the A. setosa Zone in the Sea of Okhotsk was correlated with the S. ellipsoides Zone (209–131 ka) identified in the present study as defined by the FO of S. ellipsoides (209 ka).

The upper part of the B. aquilonaris Zone (Motoyama et al. 2004) correlates with the L. sakaii Zone in the Sea of Okhotsk, which was defined by the LOs of A. setosa at 72 ka and L. sakaii at 28 ka (Matul et al. 2002). This zone also correlates with the upper part of the C. problematica Zone (131–33 ka), which was defined in the present study by the FO of C. problematica at 131 ka and LO of L. sakaii at 33 ka. These results demonstrate that the LO of L. sakaii appears to be synchronous in both the Shimokita region and the Sea of Okhotsk within a time gap of 5 ka.

CONCLUSIONS

In the present study, a high-resolution Middle to Upper Pleistocene radiolarian biostratigraphical scheme is established for the northwestern Pacific. We confirmed continuous stratigraphical occurrences of 74 radiolarian species and identified 38 of these as useful for biostratigraphical purposes. Furthermore, three new species were described (Amphimelissa tanzhuyuan sp. nov., Schizodiscus japonicus sp. nov. and Siphonosphaera? paraphoros sp. nov.). A total of 12 bioevents were identified during the past 740 ka and were used in the establishment of eight new Pleistocene radiolarian zones. Dates were based on the age model of Domitsu et al. (2011). Of the 12 events identified, 12 had never been previously identified in the northwestern Pacific. The newly established radiolarian zones were compared with zonations previously proposed in the northwestern Pacific and the Sea of Okhotsk by Matul et al. (2002), Motoyama et al. (2004) and Kamikuri et al. (2007). It was noted that the well-known Stylatractus universus LO, which has served as one of the most synchronous datum levels throughout the North Pacific, could not be used, as the species was absent in both the Shimokita area and the Sea of Okhotsk. This suggested that these sites were located outside the northwestern distribution limit of S. universus. Therefore, it was determined that the LO of S. universus was not a suitable datum for use in the western margin of the northwestern Pacific in North Japan and the Sea of Okhotsk. Instead of the LO of S. universus, the following three datums were determined to be important with respect to the Pleistocene: the LOs of A. acquilonium (357 ka), S. japonicus (238 ka) and L. sakaii (33 ka). Additionally, the abundance curve of L. sakaii was identified as a potentially useful stratigraphical tool within Middle Pleistocene sediments in the northwestern Pacific due to its rapid decrease datum (RD; 55 ka), rapid increase datum (RI; 240 ka) and three abundance peaks (229 ka (AP1), 207 ka (AP2) and 61 ka (AP3)), which could serve as synchronous events within the region.

ACKNOWLEDGEMENTS

The authors thank Drs K. R. Bjorklund and J. Gregory for their helpful reviews and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) for providing the samples. This research was supported by the Japan Society for the Promotion of Science, Tohoku University International Advanced Research and Education Organization and Global Center of Excellence Program on Global Education and Research Center for Earth and Planetary Dynamics at Tohoku University (Leader E. Ohtani) financed by the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
Radiolarian biostratigraphy in NE Japan

Manuscript received 21 May 2013
Manuscript accepted 5 December 2013
Scientific Editing by John Gregory

REFERENCES

