New species of Neogene radiolarians from the Southern Ocean – part IV

Johan Renaudie* & David B. Lazarus

Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin, Invalidenstraße 43, 10115 Berlin, Germany

*Correspondence: johan.renaudie@mfn-berlin.de

Abstract: In this last paper in our planned series, we describe 25 new radiolarian species from the Antarctic Neogene: 6 spumellarians (Lithatractus floridus, Spongopylidium aerostatum, Haeckeliella hederacea, Larcopyle faustae, Excentrodiscus planangulus and E. lappaceus) and 19 nassellarians (Anthocyrtidium sp., Artostrobus? oganeae, Botryostrobus exstructus, Ceratospyris clarki, Cornuella burgundiensis, Cystophormis petrussievskayae, Dendrospyris quadripes, Enneaphorhmis tippula, Eucencarium junakawai, Lophophaena kamikurii, L. rhopalica, Lycnochamnium andreae, Pertarachnium pauliani, Peridium tortonianicum, Phormacantha garbela, Phormospyris punnulis, Rhodospyris morleyi, Rhodospyris pulchrna and Tholospyris tautesaures). We also report the finding of fragments of an unknown Middle Miocene phaeodarian (Conchellium? sp.).

Supplementary Material: List of species of polycystine Radiolarians and of Phaeodarians encountered during our study of the Antarctic Neogene is available at http://www.geolsoc.org.uk/SUP18854

Keywords: Radiolaria; Polycystinea; Phaeodarea; Antarctic; Cenozoic; taxonomy

Received 18 October 2014; accepted 20 January 2015

Neogene radiolarians are generally abundant and well preserved in Antarctic sediments, which have been recovered by both piston coring and by the various phases of the deep-sea drilling programmes. Early studies of the radiolarian assemblages concentrated either on describing the more common species of the Recent faunas for use in Quaternary palaeoceanographic research, or on identifying a small number of species in older sediments which could be used for biostratigraphy. The majority of the species present in these sediments, if not common or clearly useful for biostratigraphic zonation remained undescribed. In order to better use these faunas in studies of biodiversity dynamics (Renaudie & Lazarus 2012, 2013a) we described a total of 70 new species, to which we add 25 more in this paper. Although a very substantial number, our studies do not fully exhaust the diversity of taxa found in Antarctic Neogene sediments. There remain many only partially resolved species clusters, or groups with difficult morphologies (e.g. Actinomminidae, Litheliidae) whose diversity remains to be fully diagnosed.

Material and methods

All studied samples (c. 350) come from DSDP and ODP deep-sea drilling sections from the Southern Ocean, mostly from the Kerguelen-Heard Plateau in the Indian sector of the Southern Ocean (Leg 119 Sites 737, 738, 744, 745 and 746; Leg 120 Sites 747, 748 and 751; Leg 183 Site 1138) with the addition of samples from the Antarctic sector (Leg 113 Sites 689, 690 and 693) and from the Pacific sector (Leg 29 Site 278) (Fig. 1). Prepared slides were drawn from the junior author’s collection or the MRC (Micropalaeontological Reference Center) radiolarian collection hosted by the Museum für Naturkunde in Berlin (Lazarus 2006). Samples were prepared to random strewn slides using standard methods (Moore 1973) using either 38, 45 or 63µm sieves.

The radiolarian biozonation follows Lazarus (1992) and Abelmann (1992). The age estimates used for the range chart (Fig. 2) are inferred linearly from an age model based on Gersonde et al. (1990) for Leg 113, Barron et al. (1991) for Leg 119, Harwood et al. (1992) for Leg 120 and Bohaty et al. (2003) for Leg 183, with all ages adjusted to the Berggren et al. (1995) time-scale. The relative abundances given in the range chart are drawn from counts made on 45µm strewn slides for 119 of the c. 350 samples. Measurements were made on specimen pictures using ImageJ (Abramoff et al. 2004): the range of variation and the mean (between brackets) are both given in microns (µm) under the Dimensions section for each species.

Higher-level classification largely follows that of Riedel (1967), with a few subsequent emendations as individually noted below.

The terminology used here follows mostly Jorgensen (1905) and Petrushevskaya (1965, 1968) for nassellarian internal structure (Fig. 3), Goll (1968) for features specific to the family Trissocyclidae and Boltovskoy (1998) for general external characters. The notation for connecting arches in nassellarians follows generally De Wever et al. (1979), Dumitrica (1991) and Funakawa (1995a) in which they are named after a combination of the initials of the species they originate from (i.e. arch AV would be an arch connecting spine A and spine V, see Fig. 3a), or, when necessary, follows Petrushevskaya (1965, 1968) in which they are named after the apophyses they are joining (i.e. arch mj joins apophyses m on spine A and j on spine V, see Fig. 3b).

All holotypes are deposited in the micropalaeontology collection of the Museum für Naturkunde, Berlin and are indentified by their accession numbers (ECO-xxx) in the descriptions. Specimens are identified by a circle on the slide.
Systematic palaeontology

Phylum Rhizaria Cavalier-Smith, 2002
Class Cercozoa Cavalier-Smith, 1998, emend. Adl et al., 2005
Subclass Phaeodarea Haeckel, 1879
Family Conchariidae Haeckel, 1879
Genus Conchellium Haeckel, 1887
Type species. Conchellium tridaena Haeckel, 1887

Conchellium? sp. (Pl. 1, figs 7A–8)

Material. Ten fragments observed in ODP Sites 689, 690 and 751.

Occurrence. Sporadic from the Actinomma golownini Zone to the Acrosphaera australis Zone (Middle to Late Miocene).

Remarks. The fragments found are those of a hemispherical shell of c. 150–200 µm diameter. It bears numerous, small, perfectly round, tube-like pores whose external rims extend laterally to form a second shell layer, seemingly (Pl. 1, fig. 7B), evoking what can be seen in Acrosphaera australis Lazarus, 1990. All these pores are arranged in quincuncial rows. The brownish tint of the shell indicates that it is probably a phaeodarian.

Specimen in Plate 1, figure 7A–B is the most complete fragment found to date.

The only other Conchariidae we recognized in the Neogene fossil record of the Southern Ocean is ?Conchellium capsula Borgert, 1907, which differs quite clearly from these fragments in its large polygonal pores.

Class Radiolaria Müller, 1858
Superorder Polycystinea Ehrenberg, 1839 emend. Riedel, 1967

Order Spumellaria Ehrenberg, 1876
Family Actinommmidae Haeckel, 1862 emend. Sanfilippo & Riedel, 1980
Genus Lithatractus Haeckel, 1887

Type species. Stylosphaera fragilis Haeckel, 1887

Lithatractus? floridus n. sp
(Pl. 1, figs 1A–3)

Derivation of name. From the Latin adjective floridus meaning ‘flowering’, for the flower-shape pore arrangement.

Diagnosis. Unequal polar spines, pores arranged in flower-shaped packs of seven, themselves arranged in a hexagonally-packed pattern.

Holotype. Plate 1, figure 2A–B; sample 119-744A-8H-3, 53–55 cm (Early Miocene); ECO-083.

Material. 97 specimens from DSDP Site 278 and ODP Site 744.

Description. Ellipsoidal shell with two polar spines: one long (more than the length of the shell) and tribladed, the other short, triangular and tribladed at its base. Pores on the shell are small and round, closely packed, arranged by group of seven in a petaloid pattern. This pattern is repeated and itself arranged in a hexagonal pattern. There is c. 6 of such petaloid groups of pores in a half-equator. Bars between the pores seem (based on observation of half-dissolved specimens, see Pl. 1, fig. 3) to be thinner between the pores of one such group and thicker between each group of pores. Both types of bars are very narrow. No medullary shell was observed to date.
Dimensions. Based on 3 specimens. Length of cortical shell main axis: 77–86 (83); of cortical shell minor axis: 70–79 (74); of long spine: 88–97 (94); of short spine: 16–21 (19).

Occurrence. Rare to common in the Cycladophora golli regipilus Zone (Early Miocene).

Remarks. Lithatractus? floridus n. sp. is significantly smaller, has a smaller number of relatively large main pores on the cortical shell, and has a noticeably thinner cortical shell in comparison to Sphaerostylus rossetta Blueford, 1982, Stylatractus neptunus Haeckel, 1887, or any of the several ‘stylosphaerid’ species of Ehrenberg, as illustrated in Suzuki et al. (2009b) and Ogane et al. (2009). The overall outline of this species is very similar to that of Lithatractus timmsi Campbell & Clark, 1944 (and, to some extent, to that of the more robust form Stauroxiphos communis Carnevale, 1908) but it differs from it in possessing only one small spine instead.
of several small spines on the opposite pole of the large spine and in its peculiar pore arrangement. It differs in general from most other stylophaerids because of its 7-fold petaloid subpole arrangement, but in addition to that it also differs from Druppatractus irregularis Popofsky, 1912 and D. name Blueford, 1982 in having one long spine (at least longer than the cortical shell) and from Druppatractus hastatus Blueford, 1982 in the latter having a flattened cortical shell. Species of the genus Druppatractus also have a pyriform medullary shell but no medullary shell was observed in Lithatractus? floridus n. sp. to date. As this absence is likely to be purely taphonomical, the generic assignment is based only on overall similarity of the cortical shell shape and is therefore only tentative.

Genus Spongopylidium Dreyer, 1889 emend. Suzuki et al., 2009a

Type species. Spongopyle (Spongopylidium) ovata Dreyer, 1889.

Spongopylidium? aerostatum n. sp. (Pl. 1, figs 4–6B)

Derivation of name. From the modern Latin aerostatum meaning ‘hot-air balloon’.

Diagnosis. Spherical outline; narrow pylome with peristome; crested pore frame.

Holotype. Plate 1, figures 6A–B; sample 120-751A-9H-5, 98–102 cm (Late Miocene); ECO-084.

Material. 27 specimens from DSDP Site 278 and ODP Sites 744, 748 and 751.

Description. Large spherical single cortical shell. The shell wall is thickened and bears many circular pores of similar size. The bars between the pores are thick and crested, giving the whole shell a honeycomb aspect. The pores are arranged in an irregular hexagonal pattern.

A small pylome protrudes from the shell. It is surrounded by a hyaline, narrow, fairly long and thick-walled peristome. Its termination can be smooth (see Pl. 1, fig. 4) or ragged (see Pl. 1, fig. 5B). The pore pattern around the pylome is particularly irregular. No medullary shell was observed.

Occurrence. Sporadic from the Cycladophora antiqua Zone to the Cycladophora spongotorax Zone (Early to Late Miocene).

Remarks. The complete lack of medullary shell in S.? aerostatum n. sp. may very well be taphonomical. All comparisons can therefore be based only on the elements of the cortical shell (which hinders proper assignment to a genus), however, S.? aerostatum does seem to show a unique combination of these elements.

Lithocarpus monikae Petrushevskaya, 1971 differs from this species in having an elliptical instead of a circular outline, in its thinner cortical shell having tinier, more numerous pores arranged randomly in a 3D meshwork and in having a spongy medullary shell linked to the cortical shell by relatively thick radial beams; even if the absence of medullary shell in our species is likely to be taphonomical, the junction of the radial beams with the cortical shell could have been seen. Prunopyle frakesi Chen, 1975 has a narrow pylome but it is surrounded by a cluster of spines instead of being prolonged by a peristome; additionally the pores in this species are more numerous, smaller, more closely packed and, more importantly, tube-shaped. Finally the shell wall of P. frakesi is smooth and its shell outline elliptical. Enamelon inemmestrum Sugiyama, 1992 shares with S.? aerostatum many characteristics: its spherical shell outline and its narrow pylome with a fairly long hyaline peristome. However, they differ in their shell wall which is, in E. inemmestrum, smooth and covered by a multitude of small pores. The size range of the last two species is also considerably larger than that of S.? aerostatum (270 to 342 µm for P. frakesi and 290 to 430 for E. inemmestrum). The Paleocene specimen illustrated in Nishimura (1992, pl. 11, fig. 10) as Diploplegma (?) sp. aff. D. somphum Sanfilippo & Riedel, 1973 is also very similar to S.? aerostatum for the same reasons invoked in the comparison with E. inemmestrum but they differ in that Nishimura’s specimen possesses a thick spongy outer layer over the cortical shell. Larcopyle titan (Campbell & Clark, 1944) differs from S.? aerostatum in its larger pylome, its elliptical outline, its shell thickness and in having smaller, irregular pores with at most only weak frames. L. titan also possesses internal shell structures, although these are very delicate and difficult to visualize.

Sphaeropyle langii Dreyer, 1889, S. antarctica (Dreyer, 1889), S. tetrapila (Hays, 1965) and S. robusta Kling, 1973 all differ from this new species in the shape of their pylome: in all these species, the pylome is wide and surrounded by several spines, whereas in S.? aerostatum it is narrow and prolonged by a hyaline peristome.

Finally, Spongopylidium pyloma (Reynolds, 1980) is a species apparently devoid of medullary shell, having a thick latticed wall and a pylome very similar to that of S.? aerostatum. However, it differs from S.? aerostatum in its small size, elliptical outline, the smoothness of its cortical shell and the random arrangement of the pores. We tentatively assign our new species to the genus Spongopylidium because of the similarity between the pylome of S. pyloma and the one of S.? aerostatum coupled with the apparent absence, in both forms, of a...
medullary shell. *Enamelon inemmestrum* also shared a similar pylome but its dense spongous inner shell makes it stand out compared to those two prior forms. Suzuki et al. (2009a) in their emendation of the genus *Spongopylidium* state that this genus includes forms with a spongy inner structure as well, meaning that *E. inemmestrum* may very well belong to that genus. It is interesting to note here that the three forms also happen to be more or less contemporaneous.

Genus Haeckeliella Hollande & Enjumet, 1960

Type species. *Haliomma macrororas* Haeckel, 1887

_Haeckeliella hederacia* n. sp.
(Pl. 3, figs 1A–3B)

Derivation of name. From the Latin adjective *hederacius* (literally ‘of ivy’), after the trellis-like lattice climbing over the spines of this species, as ivy on a tree.

Diagnosis. Smooth, single layer cortical shell with large spines surrounded by a secondary wiring, regularly connected to them.

Holotype. Plate 3, figure 1A–B; sample 119-690B-6H-4, 22–24 cm (Early Miocene); ECO-082.

Material. 48 specimens, including fragments of spines, observed in DSDP Site 278 and ODP Sites 689, 690, 747, 758 and 751.

Description. Large single-shelled skeleton. The cortical shell bears numerous large, irregularly-shaped (mostly elliptical or circular) pores. The bars between the pores are narrow and smooth. They do, however, exhibit some thorns now and then (see Pl. 3, figs 1B and 3A–B) but not at bar nodes. Some of the thorns are oriented toward the pores and not toward the exterior. The cortical shell also bears a few (6–10?) main radial spines. These spines are long and tribladed. They are attached to the cortical shell in a complex way: arches connect the blades of the spine to the bars of the cortical shell a few micrometres above the surface and again a few micrometres below the surface. The specimen on Plate 3, figure 3A–B shows that these spines continue inside the cortical shell as thin rods directed toward the shell centre. Unfortunately no specimen seems to have these rods or beams completely preserved and hence no medullary shell or spicule has been observed to date. At regular intervals along the spines, apophyses protrude from each blade, extend perpendicularly to the spine axis and then branch out and join one another to form eventually a secondary trellis-like lattice surrounding the spines. The bars that constitute this meshwork are very thin and cylindrical.

Dimensions. Based on two complete specimens. Diameter of shell: 271–276; diameter of pores: 4–32 (18).

Occurrence. Rare in the *Actinomma golouinni* Zone (Middle Miocene), although some specimens were observed sporadically from the *Cycladophora goloi regipileus* Zone to the *Cycladophora spongotherax* Zone (Early to Late Miocene).

Remarks. The attachment of the spines to the cortical shell seems identical to the one described for *Haeckeliella macrororas* (Haeckel, 1881) in Hollande & Enjumet (1960) and in Blueford (1982); however, the latter lacks the trellis surrounding the spines and has a large robust medullary shell. The trellis surrounding the main spines evokes what can be seen in *Cleveiplegma boreale* (Cleve, 1900) in Dumitrica (2013); however, the latter has a completely different cortical shell and its spines are considerably more delicate.

The assignment of this species to *Haeckeliella* is questionable because the inner structure is unknown.

Family Heliodiscidae Haeckel, 1881

Type species. *Excentrodiscus echinatus* Hollande & Enjumet, 1960

_Excentrodiscus planangulus* n. sp.
(Pl. 2, figs 1A–3, 5A–6)

Derivation of name. From the contraction of the Latin adjective *planus* (flat) and the noun *angulus* (corner), for this species’ somewhat flattened areas.

Diagnosis. Eccentric inner microsphere, spherical to ovoid outer medullary shell, globular, somewhat flattened in spots, thin cortical shell.

Holotype. Plate 2, figure 1A–B; sample 119-744A-7H-3, 53–55 cm (Middle Miocene); ECO-075 (circle 2).

Material. 1548 specimens encountered in DSDP Site 278 and ODP Sites 744, 748, 751 and 1138.

Description. Three-shelled spumellarian with two medullary shells and one cortical shell. The cortical shell is subspherical to globular, with most specimens having at least a couple of somewhat flattened areas. The shell wall is rather thin yet bars are crested, often with raised apices that can be, rarely, expressed as small thorns. Pore size varies but they are generally medium-sized, closely packed, arranged in an irregular hexagonal pattern. Pores are generally elliptical. The outer medullary shell size varies between half and a third of the size of the cortical shell. Its shape is spherical to ovoid (with the elongated part where the inner medullary shell is situated). The shell wall is thicker than that of the cortical shell. Circular to elliptical pores are closely packed on the shell wall, but the pore diameter to bar width ratio is smaller than that of the cortical shell. Pores covering the side where the inner medullary shell lies are smaller than the others. The microsphere (i.e. inner medullary shell) is small, spherical and closely fixed to one pole of the outer medullary shell by a few robust radial beams. No beams connecting the microsphere with the distal half of the outer medullary shell were observed (see Pl. 2, fig. 3). The outer medullary shell and the cortical shell are connected by many thin, cylindrical radial beams. They do not protrude outside the cortical shell. The connections to the cortical shell wall tend to create characteristic small flattened areas or even depressions on the shell outline. The radial beams also seem to widen near the connection.
Explanation of Plate 2. figs 1–3, 5–6. Excentrodiscus planangulus n. sp.: 1A, B, sample 119-744A-7H-3, 53–55 cm, holotype – (A) focus on cortical shell, (b) focus on medullary shell; 2, sample 119-744A-7H-2, 53–55 cm; 3, sample 120-751A-13H-2, 98–102 cm – isolated medullary shell; 5A, B, sample 119-744A-8H-1, 60–62 cm – (A) focus on cortical shell, (B) focus on medullary shell; 6, sample 119-744A-7H-2, 53–55 cm. figs 4, 7, 8, 10. Excentrodiscus lappaceus n. sp.: 4A, B, sample 120-751A-13H-2, 98–102 cm – isolated medullary shell, (A) focus on outer medullary shell, (B) focus on inner medullary shell; 7A, B, sample 119-744A-8H-1, 60–62 cm, holotype – (A) focus on cortical shell, (B) focus on medullary shell; 8, sample 120-751A-17H-CC; 10A, B, sample 120-748B-6H-7, 45–47 cm – (A) focus on medullary shell, (B) focus on cortical shell. figs 9, 11. Excentrodiscus japonicus (Nakaseko & Nishimura, 1974): 9A, B, sample 119-744A-4H-4, 53–55 cm – isolated medullary shell, (A) focus on outer medullary shell, (B) focus on inner medullary shell; 11, sample 113-689B-3H-5, 136–138 cm. Scale bars represent 50 µm.

Occurrence. Common from the Stylosphaera radiosa to the Cycladophora humerus Zone (Late Oligocene to Middle Miocene), then rare until the lower Cycladophora spongothorax Zone (Middle Miocene).

Remarks. This species differs from Excentrosphaerella sphaerocconcha Dumitrica, 1978, E. kamchatica Vishnevskaya, 2006, E. kovalenki Vishnevskaya, 2006, E. sukhovi Vishnevskaya, 2006, E. spinulosa (Lipman, 1972) as illustrated in Suzuki et al. (2009a) and Excentrococcus annulatus Dumitrica, 1978 primarily in possessing only one cortical shell, but also in the outer medullary shell being connected to the cortical shell with many more radial beams. The microsphere is, however, very similar to theirs. It also shares
the same microsphere structure with *Excentrodiscus echinatus* and *Excentrodiscus japonicus* (Nakaseko & Nishimura, 1974) but differs from the former in lacking external spines and from the latter in its thin, globular cortical shell. Additionally, the species we recognize as *Excentrodiscus japonicus* in the Southern Ocean (see Pl. 2, figs 9A–B and 11) was observed from the upper *Cycladophora spongotorax* Zone (Late Miocene) to the Tau Zone (Early Pliocene), thus its range is not overlapping with that of our new species in the region.

Excentrodiscus planangulus n. sp. also differs from *Excentrodiscus lappaceus* n. sp. in its shell outline (at most globular but never angular), lack of external spines, the shape of the outer medullary shell and the size ratio between outer and inner medullary shell. The specimen illustrated as *Excentrodiscus* sp. in Dumitrica (1978, pl. 4, figs 5–6) might be conspecific with *Excentrodiscus planangulus* as it shares its shell ratio, shape of the outer and inner medullary shells, numerous radial beams and globular cortical shell; however, the cortical shell of that specimen seems thicker, with a more regular pore pattern.

Excentrodiscus lappaceus n. sp.

(Pl. 2, figs 4A–B, 7A–8, 10)

Derivation of name. From the Latin adjective *lappaceus* meaning ‘resembling a burr’, after the many spines covering this species’ cortical shell.

Diagnosis. Microsphere excentric, outer medullary shell spherical and cortical shell spinose and with an angular, often indented outline.

Holotype. Plate 2, figure 7A–B; sample 119-744A-8H-1, 60–62 cm (Early/Middle Miocene); ECO-027, circle 2.

Material. Thirteen specimens were observed in DSDP Site 278 and ODP Sites 744, 746, 747 and 751.

Description. Three-shelled spumellarian (two medullary shells and one cortical). The cortical shell has an angular, partially indented outline (more or less hexagonal on most specimens). The pores on the cortical shell are large, polygonal to circular, separated by narrow, crested bars. The outer medullary shell is spherical to globular, with smaller circular pores separated by thick bars. The microsphere (i.e. inner medullary shell) is eccentric, attached to the wall of the outer medullary shell. It is small and more or less spherical. It is also heteropolar as, on the hemisphere that is closer to the outer medullary shell, it bears some small bars joining it to the outer medullary shell wall. On the other hemisphere, one long rod (which could be homologous with the antapical beam seen in the species of the genus *Pentactinosphaera*; see Nakaseko et al. (1983) and Renaudie & Lazarus (2013a); or indeed with the rod seen on the specimen illustrated as *Heliodiscus* sp. in De Wever et al. (2001, pl. 69, fig. 4)) seems to join the other side of the outer medullary shell (see specimens on Pl. 2, figs 4A–B and 7A). Multiple rod-like, radial beams join the outer medullary shell and the cortical shell. They protrude outside the cortical shell wall as short but robust radial spines. These radial spines have a large tribladed base. They seem to be more numerous than the radial beams, meaning that some are probably by-spines, yet they are indistinguishable from the radial spines.

Occurrence. Rare from the *Cycladophora golli regipligeus* Zone to the *Eucyrtidium punctatum* Zone (Early Miocene).

Remarks. As for the previous species, this species differs from *Excentrosphaerella sphaeroconcha*, *E. kamchatica*, *E. kovalenki*, *E. sukhovii*, *E. spinulosa* and *Excentrococcus annulatus* in possessing only one cortical shell. It also differs from *Excentrodiscus japonicus* (see, in addition to Nakaseko & Nishimura (1974), Kamikuri (2010) and herein in Pl. 2, figs 9 and 11) in its shell outline and the presence of external spines but also in the shape of its outer medullary shell, and from *E. echinatus* in the shape and length of the spines but also primarily in the cortical shell outline.

Thecosphaerella glebulenta Sanfilippo & Riedel, 1973 shares with *Excentrodiscus planangulus* and *E. lappaceus* its shell outline; however, its inner medullary shell does not seem to be similar and, if the specimen of *T. glebulenta* illustrated byackett et al. (2008) indeed belongs to this species, it actually seems to be a regular concentric inner medullary shell and, consequently, this species is not a heliodiscid. Additionally the shell ratio is clearly different in this species.

Family Litheliidae Haeckel, 1862

Genus Larcopyle Dreyer, 1889 emend. Lazarus et al., 2005

Type species. *Larcopyle buetschlii* Dreyer, 1889

Larcopyle faustae n. sp.

(Pl. 1, figs 9A–12B)

2005 Caltanisetta radiolarians Lazarus et al.: pl. 1, figs 1–6, non 7–9.

Derivation of name. Named after Karoline Faust, in honour of her contributions to the study of litheliid taxonomy.

Diagnosis. Globular, lumpy cortical shell, with a spiraling medullary shell.

Holotype. Plate 1, figure 12A–B; sample 119-737A-27X-2, 53–55 cm (Late Miocene); ECO-085.

Material. 1669 specimens were encountered in DSDP Site 278 and ODP Sites 689, 690, 693, 737, 744, 745, 746, 747, 748, 751 and 1138.

Description. Globular shell, with a roughly spherical to elliptical outline, deformed by numerous bumps. The shell wall is rather thin and covered with many, closely packed, round to elliptical pores of various sizes. The bars between the pores are smooth. The inner part of the shell seems to be a loose whorl that spirals from its centre and ends up merging with the cortical shell (relatively clear in specimens on Pl. 1, figs 10A to 12B). Each coil is linked to the next one (and eventually to the cortical shell) by several relatively thick radial rods (seen on Pl. 1, figs 9B, 10B and 11B, particularly). The depressions between the cortical shell bumps seem to correspond to the connection of these radial rods (see e.g. Pl. 1, figs 9B and 11B).

Some specimens (Pl. 1, figs 10A–B and 12A–B) have numerous small needle-like thorns extending from the shell’s bar nodes. No osculum or pylome was observed; there was no obvious sign of shell polarity.

Dimensions. Based on five specimens. Diameter of shell: 129–189 (145).

Occurrence. Rare throughout the whole Neogene and Quaternary, common in the *Actinomma golownini* Zone (Middle Miocene), the upper *Cycladophora spongotorax* Zone (Late Miocene) and the upper Tau Zone (early Pliocene).

Remarks. This species, while sharing many characters with *Larcopyle polyacantha polyacantha* (Campbell & Clark, 1944) and *L. p. amplissima* Lazarus et al., 2005, such as its inner whorl and its cortical shell porosity, differs from them in its rounder shell outline, the looseness of its whorl and, most importantly, in its lumpy external shell. It differs also from *Larcopyle labyrintha*
Lazarus et al., 2005 and in Larcopyle eccentriculum Lazarus et al., 2005 primarily in lacking an osculum but also in its almost spherical outline. Larcopyle peregrinator Lazarus et al., 2005 shares its outline (though being actually rounder than L. faustae) but differs in its smooth, not lumpy, thick shell wall, with raised frames around its pores. Larcopyle buetschlii is more elliptical, does not have a lumpy cortical shell, and has a denser medullary shell surrounding a central polygonal structure.

The specimens illustrated as ‘Caltanisetta radiolarians’ from the Ehrenberg Collection in Lazarus et al. (2005, pl. 1, figs 1–6, non 7–9) are probably conspecific with this new species.

Finally, L. faustae differs from the Eocene Lithelius foremanae Sanfilippo & Riedel, 1973 in its lumpy, thinner shell.

Order Nassellaria Ehrenberg, 1876
Genus Botryostrobus Haeckel, 1887 emend. Nigrini, 1977
Type species. Lithostrobus botryocystis Haeckel, 1887

Botryostrobus exstructus n. sp.
(Pl. 3, figs 9–12)

Derivation of name. From the Latin exstructus meaning ‘to pile up, to stack’, because of the impression that this species’ segments are randomly stacked on top of one another.

Diagnosis. Wavy post-thoracic segments with numerous transverse pore rows; row of wider pores at the lumbar stricture.

Holotype. Plate 3, figure 12; sample 119-745B-23H-2, 53–55 cm (Late Miocene); ECO-086.

Material. Fifty-three specimens were encountered in ODP Sites 693, 757, 745, 746, 747, 748, 751 and 1138.

Description. Multi-segmented Nassellaria with its spherical cephalis embedded in its campanulate thorax. The cephalis bears a short, needle-like apical horn and an upward-directed ventral tube (see Pl. 3, figs 9 and 12). The thorax is separated from the post-thoracic segments by a lumbar stricture expressed externally, in most specimens, by a narrower hyaline ring. All post-thoracic segments are short, of various widths, sometimes giving the shell a wavy outline. Although the last segment termination is ragged, hinting at the possibility that the shell is not complete, most specimens’ last segment differs from the previous segment in being flared (see Pl. 3, figs 10–12). The pores on the cephalothorax are round and arranged in transversal rows. The last row before the lumbar constriction is usually composed of larger pores (see Pl. 3, figs 9–10, 12). The pores on the post-thoracic segments are also arranged in transversal rows, but are smaller and, in most cases, elliptical to quadrate and elongated in the direction of the rows. Some specimens have a shape gradient from circular pores to rectangular pores from their most proximal to the most distal post-thoracic segment (see typically Pl. 3, fig. 9–10). The wider segment is usually the first or second post-thoracic segment.

Dimensions. Based on the four specimens figured. Total height: 118–144 (121); maximum width: 54–68 (56); height of the cephalothorax: 38–41 (39); maximum width of the cephalothorax: 41–52 (45).

Occurrence. This species was encountered sporadically from the Cycladophora golli regiluppus Zone (Early Miocene) to the Tau Zone (Early Pliocene).

Remarks. Because of its upward-directed ventral tube (visible in the specimens illustrated in Pl. 3, figs 9 and 12), its apical horn, its numerous segments and its transversal rows of pores, this species is clearly congeneric with other species of the genus Botryostrobus. It, however, differs from Botryostrobus branlettai (Campbell & Clark, 1944) in the outline and size of the post-thoracic segments (they are at least as long as the thorax in B. branlettai); from Botryostrobus mirabilisensis (Campbell & Clark, 1944) and from Botryostrobus acquilomaris (Bailey, 1856) in their fusiform outline and the uniform height of their post-thoracic segments; from Botryostrobus australiaensis (Ehrenberg) group sensu Nigrini, 1977 and Botryostrobus? sp. in Nigrini (1977, pl. 1, fig. 6) primarily in lacking a wide constriction between each post-thoracic segments. It also differs from Artostrobus? oganae n. sp. described herein in possessing a ventral tube, in the shape of its post-thoracic pores and in the size differentiation between the thoracic pores and the post-thoracic pores.

Family Carpocaniidae Haeckel, 1881 emend. Riedel, 1967
Genus Cystophormis Haeckel, 1887
Type species. Cystophormis pyla Haeckel, 1887

Cystophormis petrushevskayae n. sp.
(pl. 4, figs 5A–6, 9–12)
1972 Carpocanistrum sp. aff. Sethocrus odysseus (Haeckel); Petrushevskaya & Kozlova: pl. 22, fig. 16.
1975 Cystophormis brevispina (Vinassa de Regny) group; Petrushevskaya: 588; pl. 13, figs 3–7; pl. 44, figs 1–2; non Carpocanistrum brevispina Vinassa de Regny, 1900: 579–580; pl. 2, fig. 23.
1989 Cystophormis brevispina? (Vinassa de Regny); Lazarus & Pallant: 363; pl. 5, figs 14–15.

Derivation of name. Named after Maria G. Petrushevskaya who first illustrated the species.

Diagnosis. Dicytid with a three-lobed cephalis separated from the thorax by a change in contour, a thorax with longitudinally-aligned pores, and a hyaline peristome.

Holotype. Plate 4, figure 9; sample 119-737B-6R-2, 54–56 cm (Middle Miocene); ECO-087.

Material. 3163 specimens were encountered in DSDP Site 278 and ODP Sites 689, 690, 737, 744, 746, 747, 748, 751 and 1138.

Description. Thick-walled, two-segmented Nassellaria. The cephalis and the thorax are clearly distinguished by a change in contour. The thorax is subspherical to barrel-shaped. It bears more or less regular longitudinal rows (6–10 rows on a hemisphere) of round pores (4–6 per row). The rows, transversally, are arranged quincunxially. The bars between the pores are large, thick and crested. In most specimens, the crests appear as longitudinal wavy ridges. The thorax terminates in a hyaline peristome, often bearing ridges at its base (where the pore rows end). Externally the peristome is inverted-truncated-conical and internally cylindrical. The opening is usually narrower than the cephalis width but wider than the eucephalic lobe. The peristome ends without any teeth or ornamentation, with a smooth rim. The internal length of the peristome is roughly similar to the height of the cephalis. The cephalis is dome-shaped with three clear lobes. The antecephalic and the eucephalic lobe are separated by a small, needle-like spine. The eucephalic lobe is higher than the two others and, in many specimens, there is a change of contour between the lobes (though less abrupt than the one in Cystophormis of Petrushevskaya, 1975). The postcephalic lobe is separated from the eucephalic lobe by a spine V or V'. Externally the cephalis is very rough, with a few, small, randomly arranged pores.

Dimensions. Based on 5 specimens. Total height: 88–99 (97); height of cephalis: 20–26 (22); of peristome: 10–18 (16);
Explanation of Plate 3. figs 1–3. *Haeckeliella hederacia* n. sp.: 1A, B, – sample 113-690B-6H-4, 22–24 cm, holotype – (A) focus on shell surface, (B) focus on shell outline; 2A, B, sample 120-748B-6H-5, 45–47 cm – isolated spine, (A) focus on secondary wiring, (B) focus on spine; 3A, B, sample 120-748B-6H-5, 45–47 cm – (A) focus on shell surface, (B) focus on shell outline. figs 4–6, 8. *Cornutella burgundiensis* n. sp.: 4, sample 120-748B-6H-7, 45–47 cm; 5, sample 119-744A-10H-2, 60–62 cm; 6, sample 119-744A-10H-2, 60–62 cm; 8A, B, sample 120-748B-7H-2, 45–47 cm, holotype – (A) focus on thoracic wall, (B) focus on cephalis. fig. 7. *Cornutella burgundiensis?*, sample 120-748B-7H-4, 45–47 cm. figs 9–12. *Botryostrobus exstructus* n. sp.: 9, sample 119-745B-15H-4, 53–55 cm; 10, sample 119-745B-19H-5, 46–48 cm; 11, sample 119-745B-22H-6, 53–55 cm; 12, sample 119-745B-23H-2, 53–55 cm, holotype. Scale bars represent 50 µm.
maximum width: 77–93 (84); width of cephalis at collar stricture: 47–53 (49); width of peristome (inside): 26–31 (28); width of peristome (outside): 40–57 (51).

Occurrence. Rare to common from the Stylosphaera radiosa Zone to the Amphymenum challengereae Zone (Late Oligocene to Late Miocene), then sporadic until the lower Upsilon Zone (Early Pliocene). Funakawa & Nishi (2005) reported a first occurrence for the Cystophormis brevispina (Vinassa de Regny) group Petrushevskaya, 1975 down in the Early Oligocene (in palaeomagnetic Chron C12r).

Remarks. This species is classically found in the literature as Cystophormis brevispina (Vinassa de Regny, 1900) group Petrushevskaya, 1975; however, we do not believe this species is the one described and illustrated by Vinassa de Regny as it differs significantly from its diagnosis: it is described as possessing a multitude of tiny spines around its peristome (‘Appendici basali numeroso, piccolissime, simili a minute spine’ (Vinassa de Regny 1900, p. 580), also shown in his drawing) which this species completely lacks. Furthermore his drawing of the species does not show any separation or shell wall differentiation between the cephalis and the thorax when this separation is very clearly marked in C. petrushevskyae.

This species shares its trilobed cephalis with Cystophormis ob Petrushevskaya, 1975 and Cystophormis gargantua Renaudie & Lazarus, 2012 but it is easily differentiated from these two species in the former having very distinctly separated cephalic lobes, a short, thin, sub spherical thorax with a few large, closely packed pores, and the latter being at least twice as large, with a large, sub spherical to barrel-shaped thorax and consequently a very small cephalis to thorax size ratio. It differs from Sethocorys odyssea Haeckel, 1887 and from species of genera Carpocanium and Carpocanistrum primarily in its distinctly trilobed cephalis and the change in contour at the collar stricture. It also differs from species of the genus Plananopus O’Connor, 1997, and from Carpocanium? aburex Renaudie & Lazarus, 2012 in the cephalic lobes being arranged in a row in the sagittal plane. It finally differs from Cystophormis pulchrum (Carnevale, 1998) – illustrated here on Plate 4, figure 14 – in the cephalis to thorax ratio which is higher in the latter, in the change in contour at the collar stricture (absent in C. pulchrum) and in the latter having a longer peristome (more than half the length of its thorax) ending in shovelled-shaped teeth.

Family Theoperidae Haeckel, 1881, emend. Riedel, 1967

Genus Artostrobus Haeckel, 1887

Type species. Cornutella? annulata Bailey, 1856

Artostrobus? oganeae n. sp.
(Pl. 4, figs 1–3B)

2009a Eurystomoskevos sp. 1 Suzuki et al.: 265, pl. 22, fig. 8A–B.

Derivation of name. Named after Kaoru Ogane for her contribution to radiolarian taxonomy.

Diagnosis. Characterized by a campanulate thorax, a clear lumbar stricture and several irregular post-thoracic segments with pores aligned transversally.

Holotype. Plate 4, figure 2A–B; sample 120-751A-12H-3, 98–102 cm (Middle Miocene); ECO-088.

Material. Forty specimens were observed from ODP Sites 689, 748, 751 and 1138.

Description. Multi-segmented nassellarian with a spherical cephalis separated from a long campanulate thorax by furrows along arches DL and LL, and post-thoracic segments separated from the thorax by a distinct lumbar stricture. The cephalis wall bears several circular and randomly distributed pores. Spine A is free in the cephalic chamber but is close to the dorsal side of the wall. It protrudes subapically as a short triangular horn. Spines D, Ll and Lr protrude at the collar stricture as downward-directed, conical wings, no longer than the thorax. Arches AL are visible on the cephalic wall of some specimens. The thorax bears three to four rows of round pores aligned transversally. Pores on post-thoracic segments are usually larger and more closely packed than those of the thorax. The abdomen is usually short with only a couple of pore rows, but some specimens have longer abdomens. The post-thoracic segments are usually irregularly shaped, from somewhat campanulate to annular and are not systematically aligned with one another, giving the shell a somewhat wavv outline. The last segment has a ragged termination.

Dimensions. Based on three specimens. Height of cephalis: 12–17 (15); of thorax: 24–28 (26); of abdomen: 10–34 (20); of post-abdominal segments: 16–28 (22); maximum width: 48–56 (52); width of cephalis: 16–21 (19); of thorax: 36–42 (40).

Occurrence. Sporadic to rare from the Cycladophora antiqua Zone (Early Miocene) to Acrosphaera australis Zone (Late Miocene). Suzuki et al. (2009a) reported a specimen that seems to be conspecific with our new species in the Middle Eocene, although the basal segment in the Eocene form is considerably more flared than is typical for our species.

Remarks. This species was assigned to the genus Arrostrobos because, just as in A. annulatus, A. aasterseni Petrushevskaya, 1971 and A. quadrirupris Bjorklund, 1976, it possesses a cephalis clearly separated from the thorax, an apical horn and up to three wings and multiple post-thoracic segments with transversal rows of pores. However, in contrast with these species, it has, as does A.? semazen Renaudie & Lazarus, 2012, a long campanulate thorax that accounts for at least a third of the specimen height, and a clearly expressed lumbar stricture. It differs from the latter in its shorter apical horn and in the latter having a flared abdomen and no post-abdominal segments. It differs from arctostrobids, such as Siphostichartus corona (Haeckel, 1887) or Batryostrobus auritas-australis (Ehrenberg, 1844) group Nigrini, 1977, primarily in lacking a ventral tube and in the cephalis and the thorax being clearly differentiated.

Genus Cornutella Ehrenberg, 1839

Type species. Cornutella clathrata Ehrenberg, 1839

Cornutella burgundiensis n. sp.
(Pl. 3, figs 4–8B)

Derivation of name. Named after the shape of the Burgundy wine bottle (from the Latin burgundiensis meaning ‘from Burgundy’).

Diagnosis. Large Cornutella with a flaring upper thorax and an almost cylindrical lower thorax.

Holotype. Plate 3, figure 8A–B; sample 120-748B-7H-2, 45–47 cm (Early Miocene); ECO-030, circle 2.

Material. Eleven specimens were observed in DSDP Site 278 and ODP Sites 744 and 748.

Description. Long shell with a basal opening. The cephalis is almost spherical and poreless. It is separated from the rest of the skeleton by a constriction and a furrow at the level of MB. Spine A is a thin column joining MB to the shell wall subapically (it can be seen on specimen PL 3, fig. 8B for instance). It does not protrude outside as a horn. Some specimens (Pl. 3, fig. 6) show a tiny, thin downward-directed wing at the collar stricture. Other than
these, spines D, LI and LR are not visible. The uppermost thorax is also hyaline (yet it seems less smooth than the cephalis and actually looks like it bears infilled pores), and is conical with a narrow angle. It seems to be separated internally in a series of two to three narrow, transversal chambers (see Pl. 3, fig. 8B). The rest of the upper thorax flares widely. Finally the lower thorax (i.e. more than two-thirds of the shell) is almost cylindrical. Pores, in general, are large, and tend to get larger as they approach the thorax termination. They are longitudinally aligned but not transversally aligned. Their shape is almost round in the upper thorax and quadrate with rounded angles afterwards. Occasionally pore rows split in two (see Pl. 3, fig. 6) or merge (see Pl. 3, fig. 5). Thorax termination is ragged, with the bars between the pore rows appearing sometimes as teeth (see Pl. 3, fig. 4). Generally the thoracic shell wall is rather thin (Pl. 3, figs 6 and 7, for instance) but when it is thicker, the bars between the pore rows can look like ribs (see Pl. 3, fig. 4).

Dimensions. Based on four specimens. Total length: 253–323 (287); width at basal opening: 124–137 (130).

Occurrence. Rare in the Cycladophora golli regipileus Zone and the beginning of the Eucystidium punctatum Zone (Early Miocene).

Remarks. This species resembles Cornutella clathrata and Cornuttella profunda Ehrenberg, 1854 in its simple spherical hyaline cephalis and its uppermost hyaline thorax. However, it differs from these two species in its size, its thorax outline, its lack of an apical horn and its large squarish pores. Cornutella trochoïs Ehrenberg, 1873 (Suzuki et al. 2009b, pl. 73) has a similarly flared shell shape but the lattice wall is a hexagonal meshwork rather than vertical rows of quadrate-rounded pores as in our species. It also differs from Plectopyramidia dodecomma Haeckel, 1887 and Peripyramidia circum-texta Haeckel, 1887 in its upper/lower thorax differentiation, in its thinner shell wall and in its smaller pores with rounded corners. Litharachnium tentorium Haeckel, 1862 also has a flaring upper thorax and longitudinal rows of pores splitting in half, but its lower thorax also flares widely, to end up flat instead of cylindrical.

Genus Lychnocanium Ehrenberg, 1847 emend. Nishimura, 1990

Type species. *Lychnocanium falciferum* Ehrenberg, 1847

Derivation of name. Named after Andrea Abelmann who first illustrated the species.

Diagnosis. No external collar constriction; thick, campanulate thorax; three inward-directed blade-like feet.

Holotype. Plate 5, figure 3; sample 120-748B-8H-3, 45–47 cm (Early Miocene); ECO-089.

Material. Six specimens were observed from ODP Sites 748 and 751.

Description. Large dicytrid nassellarian with a spherical, hyaline cephalis and a large campanulate thorax bearing three feet. The cephalis seems to be half-sunken into the thoracic cavity (Pl. 5, fig. 4A). The inner spicule was not observed, which might indicate that it is either minute or more probably embedded in the cephalic wall. The apical horn is large, conical to blade-shaped, leaning toward the dorsal side; it has a large base. No pore was observed on the cephalic wall. The thoracic wall is very thick, campanulate with its maximum width in its lower half, and bears closely packed, large circular to hexagonal pores, arranged in a hexagonal pattern. The thorax terminates in a large hyaline rim, from which three feet depart. The feet are shorter than the length of the thorax and curved inwards. The feet are flat (i.e. with a rectangular cross-section) and at their base seem thicker on the inwards and outwards margin than at their centre (see Pl. 5, figs 3B and 4B); they seem also to terminate without tapering to their tip, as is common in other species of *Lychnocanoma*.

Dimensions. (of the two specimens illustrated) Length of the shell (without the apical horn and the feet): 161–170; maximum width of the shell: 156–168; length of the feet: 95–110(103).

Occurrence. Found in the Stylosphaera radiosa Zone and the Cycladophora antiqua Zone (Early Miocene). Some specimens were observed from the Cycladophora humerus Zone to the Cycladophora spongothorax Zone (Middle Miocene). The specimens illustrated in Plate 5, figure 4A–B, possibly reworked, was found in a sample belonging probably to the earliest Tau Zone (latest Miocene). Abelmann (1992) reported this species in the Cycladophora golli regipileus Zone (Early Miocene) of site 748.

Remarks. This species differs from *Lychnocanoma amphitrite* Foreman, 1973 primarily in lacking an abdomen, although the type specimen of *L. amphitrite* also has a more globular inflated thorax shape than our species. In addition, the size range of these two species does not overlap, as *L. amphitrite* is considerably larger than our new species: according to Foreman (1973), its overall length, without the horn, is between 190 and 280 µm, while the specimens we measured for our new species lie between 161 and 170 µm. Foreman notes that very late specimens of *L. amphitrite* tend to have reduced abdomens, suggesting that our species is possibly a descendant form of the former species. It also differs from the specimen illustrated as *Lychnocanoma* sp. cf. *L. bellum* (Clark & Campbell) in Foreman (1973) in its larger and thicker thorax bearing more numerous, more compactly arranged pores. Bekoma bidarfensis Riedel & Sanfilippo, 1971 differs from this new species primarily in its peculiar cephalic structure, its two horns and its long neck.

Other species of *Lychnocanoma* and *Lychnocanona*, such as *L. grande* Campbell & Clark, 1944, *L. nipponicum* Nakaseko, 1963 and *Lychnocanona magnacornuta* Sakai, 1980 and *L. parallelespis* Motoyama, 1996, differ from this species in their size and in their long trilobated feet.

Genus Periarachnium Haeckel, 1881 emend. Nishimura, 1990

Type species. *Periarachnium periplectum* Haeckel, 1887

Derivation of name. Named after Paulian Dumitrica who first illustrated this species.

Diagnosis. Dicytrid with small, thick cephalis covered by thorns; conical-campanulate thorax, ragged termination, thoracic subcircular, irregular pores more or less aligned longitudinally, increasing in size distally.

Holotype. Plate 4, figure 16; Sample 120-748B-6H-7, 45–47 cm (Early Miocene); ECO-090.

Material. Twenty-one specimens in DSDP Site 278 and ODP Sites 690, 744 and 748.

Description. Dicytrid nassellarian with a small, thick, hemispherical cephalis and a long, thin, conical thorax. Both segments are distinguished externally by a clear change in contour and a furrow following DL and VL (see Pl. 4, figs 4, 15 and 17). The cephalis is...
Explanation of Plate 4. Figs 1–3. *Artostrobus? oganeae* n. sp.: 1, sample 120-751A-12H-3, 98–102 cm; 2A, B, sample 120-751A-12H-3, 98–102 cm, holotype – (A) focus on shell, (B) focus on cephalic inner structure; 3A, B, sample 120-751A-12H-3, 98–102 cm – (A) focus on shell, (B) focus on cephalic inner structure. Figs 4, 7, 8, 15–17. *Periarachnium pauliani* n. sp.: 4, sample 119-744A-11H-3, 60–62 cm; 7, sample 120-748B-6H-7, 45–47 cm; 8, sample 120-748B-6H-7, 45–47 cm; 15, sample 113-690B-6H-6, 22–24 cm, 16, sample 120-748B-6H-7, 45–47 cm, holotype; 17, sample 120-748B-6H-7, 45–47 cm. Fig. 13. *Periarachnium pauliani*?, sample 120-748B-7H-6, 45–47 cm. Figs 5, 6, 9–12. *Cystophormis petrushevskayae* n. sp.: 5A, B, sample 119-737B-5R-2, 53–55 cm – (A) focus on shell, (B) focus on cephalic inner structure; 6, sample 120-748B-6H-5, 45–47 cm; 9, sample 119-737B-6R-2, 54–56 cm, holotype; 10, sample 119-737B-6R-2, 54–56 cm; 11, sample 119-737B-5R-2, 53–55 cm; 12, sample 119-737B-6R-2, 54–56 cm. Fig. 14. *Cystophormis pulchrum* (Carnevale, 1908), sample 119-737B-6R-2, 54–56 cm. Scale bars represent 50 µm.

rough and thick and bears at most one or two small, round pores (see Pl. 4, figs 7 and 16). It, however, bears multiple short triangular to conical horns. The thorax is thinner than the cephalis and bears many closely packed elliptical to polygonal pores arranged, longitudinally, in rows and, transversally, quincuncially. The size of the pores increases (see Pl. 4, figs 8, 15) toward the thorax termination, which is ragged. The upper, flaring part of the thorax bears smaller pores that are more irregularly distributed and shaped, and several short, triangular to conical byspines similar to those borne by the cephalis. It also bears three ribs (see Pl. 4, figs 7, 15, 16) extending from spines D, Ll and Lr that can eventually protrude as short wings (see Pl. 4, fig. 15 and? Pl. 4, fig. 13). Spine A seems to be free in the cephalic cavity but close to the dorsal side of the wall. It protrudes as an apical horn but is not discernable from the other additional horns. The specimen on Plate 4, figure 8 seems to bear apophyses m on A in the cephalic cavity close to the apex.

Dimensions. Based on eight specimens. Height of cephalis: 21–26 (23); width at collar stricture: 28–34 (32); total height: 82–139 (100); width at thorax opening: 72–102 (82).

Occurrence. Encountered sporadically from the *Stylosphaera radiosa* Zone (latest Oligocene) to the *Cycladophora golli regipileus* Zone (Early Miocene).
Remarks. This species resembles forms like *Periarachnium periplectum* and *P. anthocyrtis* (Haeckel, 1887) in the longitudinal alignment of the thoracic pores, in the cephalis and thorax separation, in the thorns on cephalis and upper thorax, in spines *D*, *Ll* and *Lr* being present as ribs on the upper thorax and, according to Nishimura (1990), in sharing their cephalic structure, hence the generic assignment. It differs from them, however, in being considerably shorter, in the thickness and shortness of the cephalis and the fact that the thoracic pore size increases distally. *Periarachnium pauliani* n. sp. also shares its longitudinal pore alignment and its thorns on the cephalis and upper thorax with *Sethoconus tabulatus* (Ehrenberg 1873) but differs in its cephalis being clearly separated by a change in contour from the thorax. It also differs from *Lophocorys polyacantha* Popofsky, 1913 in the wavy thorax of the latter and in the shape of the cephalis; from *Phlebarachnium* sp. aff. *Periarachnium periplectum* in Nishimura & Yamauchi (1984) in the shape of the cephalis, the length of the thorax, the thickness of the shell and the pore diameter/bar width ratio; from *Ceratocyrtis? moravamenensis* Funakawa, 1995b and *C.? cantharoides* Sugiyama & Furutani, 1992 in these species having well-expressed, tribladed apical and ventral horns; from *Ceratocyrtis histricosus* Jørgensen, 1905) and *Ceratocyrtis stoermert* Goll & Bjørklund, 1989 primarily in their size but also in the separation between cephalis and thorax being expressed in those species by furrows along arches *DL* and *VL*; from *Ceratocyrtis mashae* Bjørklund, 1976 in the latter’s cephalis being incorporated into the thoracic cavity and in the thorax of the latter tapering distally; from *Gondwanaria reshetnjakae* (Petrushevskaya, 1967) and *G. campanulaeformis* (Campbell & Clark, 1944) (= *Sethoconus dogieli* Petrushevskaya, 1967) primarily in the first one having no distinct collar stricture and in the second having an apically elongated cephalis with well-expressed arches *ap* (see Funakawa 2000).

Family Pterocorythidae Haeckel, 1881 emend. Riedel, 1967 emend. Moore, 1972

Genus Anthocyrtidium Haeckel, 1881

Type species. *Anthocyrtis ophirensis* Ehrenberg, 1873

Anthocyrtidium sp.

(Pl. 5, figs 1A–2B)

Material. Six specimens observed in DSDP Site 278 and ODP Sites 751 and 1138.
Description. Two-segmented nassellarian with an apically elongated cephalis and a long, barrel-shaped to spindle-shaped thorax. As for the type species of the genus, the cephalis is separated in an elongated eucephalic lobe that extends far up on the apical horn, and two lateral lobes separated from the former by arches ap (Pl. 5, fig. 1A–C) and situated at the base of the cephalis, below the eucephalic chamber. The cephalis bears a few randomly distributed small circular pores, mostly on the basal part of the cephalis. The apical horn is fairly long, blade-shaped with a thickened base (because of the eucephalic chamber extending over it). Spines LI and Lr seem particularly thick (see Pl. 5, fig. 1C). The collar is characterized by a change in contour but no clear striation. The thorax is long, barrel-shaped to spindle-shaped. Its termination is a relatively wide hyaline, tapering peristome, not demarcated from the rest of the thorax by any change in contour or any thickening. Several small, triangular teeth extend from its base, at regular intervals. The pores on the lower part of the thorax are aligned longitudinally, small, circular and are rather widely spaced. These pore rows are separated by thin ridges (see Pl. 5, fig. 1A). Pores are arranged, transversally, in quinquerex. On the upper part of the thorax, though, the pores are more irregularly spaced, with occasionally large areas of smooth, hyaline wall between them, and their longitudinal alignment is less regular. One specimen (Pl. 5, fig. 2A–B) exhibits a thin line on the shell wall between the upper and the lower part of the thorax (as delimited by the different pore pattern). Although this might be purely taphonomical it could also be the mark of the fusion between a true thorax (which we referred to earlier as the ‘upper thorax’) and an abdomen (the ‘lower thorax’). Other specimens (Pl. 5, fig. 1A–C), however, do not show such a line.

Occurrence. A few specimens have been observed in the Eucrytidium punctatum Zone (Middle Miocene) of Sites 278 and 751 and some others in the Amphymenium challengerae Zone (Late Miocene) of Site 1138.

Remarks. The cephalis of Anthocyrtidium sp. corresponds exactly to that described for the genus in Sanfilippo & Riedel (1992). It is, in particular, almost identical to that of Anthocyrtidium stenum Sanfilippo & Riedel, 1992, with the exception that the two lateral lobes are somewhat narrower in our specimens. Apart from this detail, they differ in A. sp. termination and in A. stenum abdomen. Anthocyrtidium adiaphorum Sanfilippo & Riedel, 1992 differs also from A. sp. for the same two reasons.

Anthocyrtidium ehenbergi (Stöhr, 1880), A. ophirensis (Ehrenberg, 1873), A. zanguebaricum (Ehrenberg, 1873), A. angulare Nigrini, 1971, A. euryclathrum Nigrini & Caulet, 1988, A. jenghi Streeter, 1988 and A. michelinae Caulet, 1979 all differ from our specimens in the shape of their thorax (generally campanulate) and their thorax porosity (mainly their higher pore density but also in the pore’s shape and size). A. nosicaca Caulet, 1979 has a more elongated thorax, more similar to that of our specimens, but its pores are larger and compactly arranged. The same can be said for A. prolatum Nigrini & Caulet, 1988 and A. pliocenica Seguenza, 1980, which have a thorax outline roughly similar to that of A. sp. but differ in their porosity and, in the case of A. pliocenica, in having a second row of teeth above the basal opening. The shell outline is reminiscent of that of Lamprocystis jussonis (Haeckel, 1887) (= Lamprocystis hannai (Campbell & Clark, 1944)) but they differ in their porosity and in the latter being separated into two segments by a clear lumbar structure. Similarly, it differs from Pterocorys clausus (Popofsky, 1913) in the latter’s lumbar structure, its row of terminal teeth and in the cephalic structure.

The patchy occurrence pattern observed for A. sp. is similar to the observed overall patchiness of Pterocorythidae occurrences in the Southern Ocean: it is probable that A. sp was not, in fact, a typically Antarctic species but rather a Subantarctic or even, perhaps., Subtropical species.

The two illustrated specimens are the only complete specimens observed to date, hence we have left this species in open nomenclature.

Family Plagiacanthidae Hertwig, 1879 emend. Petrushevskaya, 1971

Genus Enneaphormis Haeckel, 1881 emend. Petrushevskaya, 1971

Type species. Enneaphormis rotula Haeckel, 1881

Enneaphormis tippula n. sp.
(Pl. 6, figs 1A–4)

Derivation of name. From the Latin tippula, water bug.

Diagnosis. Cephalic cap; three smooth spines joined by a smooth ring.

Material. Fourteen specimens in DSDP Site 278 and ODP Sites 689, 746, 748 and 751.

Holotype. Plate 6, figure 4A-B; sample 119-746A-5H-1, 53–55 cm (Late Miocene); ECO-070, circle 2.

Description. Three large, cylindrical spines arising from spines D, LI and Lr constitute the frame of that species’ skeleton. Proximally, the cephalic wall diverges from these spines to form a network of anastomosed bars forming a hemispherical cap. Pores delimited by these bars are polygonal, irregular in size and shape and closely packed. Distally, arches diverge also from these spines to form a ring. This ring is usually circular but can, in some specimens, be somewhat hexagonal (as in the type species of the genus). The three spines continue after the ring. Under the cephalic cap, in addition to the well-developed spines D, LI and Lr, spines MB and A are clearly distinguishable. MB is relatively long – which explains why the three main spines do not join at the centre of the cephalic cap but that their junction is somewhat eccentric; see for example Plate 6, fig. 4A-B – and aligned with spine D. Spine A is short, directed vertically, joins the cephalic cap subapically and protrudes as a very short, needle-like horn.

Occurrence. Sporadic from the Cycladophora golli regipileus Zone to the Cycladophora spongitorus Zone (Early to Late Miocene).

Remarks. Its circular ring and the hemispherical latticed cephalic cap seem characteristic enough to unambiguously differentiate this form from related forms such as Enneaphormis rotula Haeckel, 1881, Sethoparmis aurelia Haeckel, 1881 and Enneaphormis sp. Renaudie & Lazarus, 2013a. In particular, Enneaphormis rotula has a cephalic velum (when present) that is attached to the ring rather than halfway between the centre and the ring, and usually possesses additional spines arising from the ring, between the three main ones.

Genus Euscenarium Haeckel, 1887 emend. Petrushevskaya, 1981

Type species. Euscenium tricolpium Haeckel, 1887

Euscenarium funakawai n. sp.
(Pl. 6, figs 6A–7B, 10, 13)
Explanation of Plate 6. figs 1–4. *Enneaphormis tippula* n. sp.: 1A, B, sample 113-689B-4H-2, 101–108 cm – (A) focus on cephalic cap wall, (B) focus on spines D, Ll and Lr; 2, sample 120-748B-6H-2, 45–47 cm; 3, sample 120-751A-12H-6, 98–102 cm – basal view; 4A, B, sample 119-746A-5H-1, 53–55 cm – (A) focus on cephalic cap wall, (B) focus on ring. fig. 5A, B. *Lophophaena kamikuri?*, sample 120-751A-4H-3, 98–102 cm – (A) focus on shell wall, (B) focus on internal structure. figs 6, 7, 10, 13. *Euscenarium funakawai* n. sp.: 6A, B, sample 119-744A-8H-1, 60–62 cm, holotype – (A) full specimen in ventral view, (B) zoom on inner structure; 7A B, sample 120-744A-9H-2, 45–47 cm – (A) focus on spine A, (B) focus on shell wall; 10, sample 120-748B-6H-3, 45–47 cm; 13, sample 120-748B-6H-1, 45–47 cm, figs 8, 9, 11, *Phormacantha garbela* n. sp.: 8A, B, sample 120-748B-5H-4, 45–47 cm – (A) focus on shell well, (B) focus on spine A. 9A, B, sample 120-748B-5H-7, 45–47 cm – (A) focus on shell well, (B) focus on spine A. fig. 12A, B. *Phormacantha garbela?*, sample 183-1138A-14R-2, 50–52 cm – (A) focus on shell well, (B) focus on spine A. All scale bars 50 µm except 6B for which it is 10 µm. a, anterior apophyse; m, mitral apophyse; p, pectoral apophyse; A, apical spine; Lr, right lateral spine; Ll, left lateral spine.
Derivation of name. Named after Satoshi Funakawa who first illustrated this species.

Diagnosis. Small Clathromithrinaceae with thick, almost poreless wall, a lanceolate apical horn and three short, tribladed feet. Small Clathromithrinae with thick, almost poreless illustrated this species.

Derivation of name. From the Greek-derived Latin adjective rhopalicus meaning ‘shaped like a club, a bludgeon’.

Diagnosis. Characteristic large ball-shaped cephalis wider than the thorax; collar structure characterized by a series of large pores with a ventral-to-dorsal size gradient.

Holotype. Plate 7, figure 2; sample 120-748B-6H-6, 45–47 cm (Early Miocene); ECO-093

Material. Twenty-five specimens from DSDP Site 278 and ODP Sites 748 and 1138.

Description. Two-segmented forms with a large and thick cephalis representing at least half of the height of the shell and a narrower, cylindrical thorax. The cephalic wall is thick and crested, sometimes elongated longitudinally, and bears circular pores whose size decreases toward the apex of the shell. They are regularly arranged in an hexagonal pattern. They often have raised frames (Pl. 7, figs 2 and 5). There is a clear constriction at the collar. The collar itself is constituted by what seems to be a ring linking A and V at the base of the cephalic chamber. A few, thicker, downward-directed bars arise from this ring, thus delimiting large pores. The thoracic wall seems to be connected to these bars (see Pl. 7, figs 2, 5–6), though it often continues above them (see Pl. 7, figs 2 and 5). The pores delimited by the bars are uneven in size as there is a size gradient from smaller pores on the ventral side to larger ones on the dorsal side. Spine A can be seen on some specimens (see specimen in dorsal view, Pl. 7, fig. 5): it is fused to the cephalic wall and does not protrude as a horn. There seem to be a series of pore pairs at the junction of spine A and the cephalic wall.

Dimensions. Based on three specimens. Width of cephalis: 57–65 (62); width of thorax: 45–64 (54); width at collar stricture: 30–35 (33); length of cephalis: 56–84 (68).

Occurrence. Rare in the Cycladophora gollii regipileus Zone (Early Miocene). One specimen, possibly reworked, was observed in the Cycladophora spongotherae Zone (Middle Miocene) of site 1138.

Remarks. The collar structure seems somewhat similar to what we observed in the Antarctic specimens of Lophophaena macrencephala Clark & Campbell, 1945 and the specimens illustrated as L. macrencephala group in Dzirnordze et al. 1978 but differs from these forms in its thick, thornless cephalis and its short, thin, velvety thorax. The junction between the cephalis and the thorax of L. rhopalica n. sp. evokes somewhat that seen in most complete specimens of Arachnocorallium calvata (Haeckel, 1887) or A. stilla Renaudie & Lazarus, 2015 (see discussion in Remarks for that species). However, none of the basal spines seen in the species of Arachnocorallium can be seen here.

Lophophaena kamikurii n. sp. (Pl. 7, figs 10A–12; ?Pl. 6, fig. 5A–B)

Derivation of name. Named after Shin-Ichi Kamikuri for his contribution to the Neogene radiolarian taxonomy.

Diagnosis. Large irregular, thorn-bearing cephalis; thin-walled shell with numerous pores.

Holotype. Plate 7, figure 10A–B; sample 120-751A-1H-1, 98–102 cm (Pleistocene); ECO-094

Material. 149 specimens from ODP Sites 689, 748, 751 and 1138.

Description. Dicyrtid nassellarian with a large irregular hemispherical cephalis bearing thorns and a wider, larger subcylindrical thorax. The cephalis bears numerous triangular thorns, mostly toward the apex. It is perforated by numerous, randomly distributed, elliptical
pores of various sizes. Pores on the thoracic wall are similar but more closely packed. The thoracic wall also bears some smaller thorns, now and then, arising from bar nodes. Specimens (see Pl. 7, figs 10A and 11) often bear larger pores at the collar. The collar is expressed as a stricture, with furrows along AL and VL (see Pl. 7, fig. 11). MB is situated slightly lower than the external collar stricture. Spine A joins the wall at the collar and spine V somewhat higher; they do not seem to protrude as horns. Spines LI and Lr are spread widely and join the wall relatively high on the thoracic wall. Spine D was not observed.

Dimensions. Based on six specimens. Length of cephalis: 60–70 (64); width of cephalis: 54–71 (62); width of thorax: 86–116 (101).

Occurrence. Sporadic from the lower Upsilon Zone (Late Pliocene), rare to common from the upper Chi to the Omega Zone (Pleistocene).
Remarks. The shell evokes at first glance that of contemporaneous species, such as Antarctissa strelkowi Petrushevskaya, 1967, A. fragea Renaudie & Lazarus, 2015 and Helotholus praemagna Weaver, 1983; however, they differ in that our new species lacks a strong downward-directed spine D, has an irregular, large, hemispherical cephalis shape and numerous thorns. Conversely, its cephalis evokes that of the also contemporaneous Lophophaena nadezdae Petrushevskaya, 1971 but its wide thorax, thinner shell and larger pores make a clear distinction between these two species. Additionally it differs from Amphiplecata tripleura Funakawa, 1995a in lacking the external arch AD and the large pores surrounding it; and from Lithomelissa setosa Jorgensen, 1900 in the latter having an elongated cephalis and being considerably smaller.

Genus Peridium Haeckel, 1887

Type species. Peridium lasanum Haeckel, 1887

Peridium tortonianicum n. sp. (Pl. 7, figs 1A–C, 3–4B; ?Pl. 7, fig. 7A–B)

Derivation of name. Named after the ICS stage Tortonian, during which this species seem to have lived, with the adjective termina-ticus.

Holotype. Plate 7, figure 3; sample 119-744A-5H-1, 53–55 cm (Late Miocene); ECO-095.

Material. 96 specimens in ODP Sites 744, 747, 751 and 1138.

Description. The shell consists of a large subspherical to globular eucphalic chamber and a thick, large initial spicle. Some specimens show some additional bars that seem to form a somewhat loose thorax (see Pl. 7, fig. 1A–C, for instance). The initial spicle consists of spines A, V, D, MB, LI and LR, with, in addition to that, an axobate sometimes visible as a small protuberance on MB. An arch AD is clearly visible on most specimens (Pl. 7, figs 3A and 7B; ?Pl. 7, fig. 1B). The cephalic chamber is connected to spine A once subapically but also in two or three lower points (see Pl. 7, figs 4B and 7A). It lies on clearly expressed arches ap (i.e. AL) and on spine V. Whereas spine A continues as an apical horn with a broad base, spine V does not. Spines LI and LR are rather short, but spine D can be longer (see Pl. 7, fig. 1A–C, for instance). Pores on the cephalic wall are irregular in size, with very large pores interspaced with very small pores as in Plate 7, figures 1A and 4A, but are generally all elliptical. The bars between the pores are thick and crested, and can sometimes also bear thorns (see Pl. 7, figs 4B and 7A). When some thoracic bars are present, the two external segments are separated at the level of arches ap (Pl. 7, fig. 1A–B).

Dimensions. Based on four specimens. Maximum width of cephalis: 71–99 (72); height from MB to apex: 84–100 (88); length of spine A from MB to tip of apical horn: 80–138 (84).

Occurrence. Rare in the Cycladophora spongotherax Zone (Late Miocene), sporadic until the Siphonosphaera vesuvius Zone (Late Miocene).

Remarks. This species differs from Arachnocorallium cerebellum Renaudie & Lazarus, 2015 and from Peridium sphaerum Funakawa, 1995b in these two species having a cephalis separated into upper globular and lower ‘funnel-shaped’ halves. They also both lack clearly expressed arches AL and AD. Peridium longispinum Jorgensen, 1900 is very similar to this new species, hence the generic assignment, but differs in its smaller size, thinner shell and spicle, the absence of a clearly expressed arch AD, and in having numerous thin by-spines. They share, however, the presence of arches AL and the shape of their spine A, more specifically the way the eucphalic chamber is linked to it (see, for instance, Dolven et al. 2014, pl. 6, fig. 18). This character seems to be shared also by Phormacantha hystrix (Jorgensen, 1900), but this species differs from the latter two in lacking a proper latticed cephalic wall. It does possess, however, an external arch AD, as in our new species. Peridium minutum Cleve, 1899 (as illustrated in Bjerklund et al. 2014) differs from both P. longispinum and P. tortonianicum in its cephalic wall consisting of thin bars delimiting small, polygonal pores and in its large pair of pores at the junction between spine A and the cephalic wall, above the connection with arch AL.

Finally Peridium tortonianicum n. sp. differs from Lophophaena sp. D Petrushevskaya, 1971 (pl. 56, figs 3–4) in the latter possessing a proper thoracic wall and two additional subapical small spines similar to the apical horn. Spines LI, LR and D in the latter species are directed downwardly instead of more laterally in P. tortonianicum.

Genus Phormacantha Jørgensen, 1905

Type species. Peridium hystrix Jørgensen, 1900

Phormacantha garbela n. sp. (Pl. 6, figs 8A–9B, 11A–B; ?Pl. 6, fig. 12A–B)

Derivation of name. From the Occitan garbèla which is a kind of wicker fishtrap, after the loose meshwork that forms this species’ wall and the apical opening.

Diagnosis. Loosely, apically elongated skeleton; spines A and V part of the cephalic wall; short, downward-directed feet D, LI and LR.

Holotype. Plate 6, figure 11A–B; sample 120-748B-5H-7, 45–47 cm (Early/Middle Miocene); ECO-096.

Material. Nine specimens from DSDP Site 278 and ODP Sites 689, 748 and 1138.

Description. Apically elongated, almost cylindrical, cephalic wall consisting of a random meshwork of bars of various thicknesses. The bar nodes often bear tiny thorns from which new, thinner, bars extend. The shell wall does not seem to be properly closed apically.

Spine A and spine V both join the cephalic wall and continue as upward-directed ribs (and eventually as conical horns). Spine A connects directly to the wall, while spine V connects at mid-height of the wall (see Pl. 6, fig. 11A). No specimen was seen in sagittal view so it is difficult to estimate the size of MB but all spines seem to converge to one point hinting that MB is probably very short. No AX was observed. Spines D, LI and LR (each separated by an equal angle) extend to the bottom of the cephalic wall where they then continue downwards (in a direction almost parallel to that of the cephalic wall) as conical, thorny feet. The cephalic wall bars randomly connect to these feet in several places.

Dimensions. Based on four specimens. Height (from MB to tip of A): 73–95 (84); maximum width: 48–72 (69).

Occurrence. Found sporadically from the Cycladophora spongotherax to the Siphonosphaera vesuvius Zone (Middle to Late Miocene).

Remarks. This species differs from Plectronantha cressmatopagmi Nigrini, 1968 in lacking strong arches near MB between spines LI and LR and in lacking secondary spines. The last point is also what distinguishes this new species from Plagiacantha panarium Dumitrifica, 1973. It differs from Plectronantha oikiskos Jorgensen, 1905 and P. trichoides Jorgensen, 1905 in its long spine V, in its apically elongated cephalic wall and in spines D, LI and LR being expressed externally as short, downward-directed feet. The last two characters are also what separate this species from Phormacantha hystrix, the type species of the genus.
Explanation of Plate 8. figs 1–4. *Dendrospyris quadripes* n. sp.: 1A, B, sample 120-748B-8H-6, 45–47 cm, holotype – (A) ventral side, (B) dorsal side; 2A, B, sample 120-748B-8H-6, 45–47 cm – (A) ventral side, (B) dorsal side; 3A, B, sample 120-748B-8H-6, 45–47 cm – (A) dorsal side, (B) ventral side; 4A, B, sample 120-748B-8H-6, 45–47 cm – (A) ventral side, (B) dorsal side. **figs 5–9. Phormospyris punnulis** n. sp.: 5, sample 119-744A-10H-2, 60–62 cm – dorsal view; 6, sample 119-744A-10H-2, 60–62 cm, holotype – dorsal view; 7, sample 119-744A-10H-2, 60–62 cm – dorsal view; 8, sample 120-747A-1H-5, 45–47 cm – dorsal view; 9, sample 120-748B-6H-5, 45–47 cm – dorsal view. **figs 10–11. Phormospyris punnulis?** 10, sample 119-744A-10H-2, 60–62 cm – ventral view?; 11A, B, sample 120-748B-6H-5, 45–47 cm – (A) dorsal side, (B) ventral side. **figs 12–15. Rhodospyris pulchra** n. sp.: 12, sample 119-744A-10H-2, 60–62 cm; 13, sample 119-744A-10H-2, 60–62 cm, holotype; 14, sample 119-744A-10H-2, 60–62 cm; 15, sample 120-748B-7H-2, 45–47 cm. **fig. 16A–C. Tholospyris tautessares** n. sp., sample 120-748B-6H-1, 45–47 cm – (A) focus on apex, (B) focus on cephalic wall, (C) focus on thoracic wall. Scale bars represent 50 µm.
The specimen illustrated in Plate 6, figure 12A–B has a proper, smooth cephalic wall and thus differs from the holotype. However, the arrangement of its spines and its feet make us believe it belongs to this new species. It might simply represent either a more advanced stage of cephalic wall building or a particularly heavily silicified specimen.

Genus Ceratospyris Ehrenberg, 1847

Type species. *Haliomma radiatum* Ehrenberg, 1844

Ceratospyris clarki n. sp.

(Pl. 9, figs 3, 9A–11B, 13A–14B; ?Pl. 9, fig. 12A–B)

Derivation of name. Named after Bruce L. Clark, for his contribution to Cenozoic radiolarian taxonomy.

Diagnosis. No sagittal constriction; large pairs of sagittal-lattice pore on the dorsal side; shell wall extends shortly below the basal ring.

Holotype. Plate 9, figure 14A–B; sample 119-744A-9H-1, 60–62 cm (Early Miocene); ECO-097.

Material. 278 from DSDP Site 278 and ODP Sites 690, 693, 744, 747, 748, 751 and 1138.

Description. Shell divided in two lobes by a relatively wide sagittal ring which is not marked by any external constriction. The apex of the shell is the apex of the sagittal ring, where spine A sometimes forms a small apical horn. On the dorsal side, two pairs of sagittal-lattice pores can be seen, the lowermost being the larger, and being elliptical, elongated in the direction of the sagittal ring. On the ventral side, three large pairs of sagittal-lattice pores are present. Other pores present on the cephalic wall are smaller, quite numerous, more or less circular and irregularly distributed. The shell wall continues below the basal ring to form a very short thorax. The basal constriction is marked only by a slight change in contour.

Dimensions. Based on nine specimens. Total height: 72–91 (78); maximum width: 74–102 (85); long axis of lowermost sagittal-lattice pore pair: 18–32 (26); long axis of upper sagittal-lattice pore pair: 6–24 (14).

Occurrence. Rare from the Clinoherbodas longithorax Zone to the Eucyrtidium punctatum Zone (Early to Middle Miocene), except in the transition between the Cycladophora golli regipileus Zone and the E. punctatum Zone (Early Miocene) where it is more common. Sporadic until the Upsilon Zone (Early Pliocene).

Remarks. The species described herein appears to differ also from *Triostylospyris lunadae* Campbell & Clark, 1944. This is based primarily on the description given by these authors, as their image of this species is very poor, and attempts by the junior author to find this species in the type series material deposited at the Natural History Museum in London have only been unsuccessful. In comparison to *T. lunadae*, our species differs in lacking the three distinct feet, and in possessing large pairs of sagittal-lattice pores.

Type species. *Ceratospyris stylophora* Ehrenberg, 1874

Dendrospyris quadripes n. sp.

(Pl. 8, figs 1A–B)

?1944 *Tristylospyris pacifica* Campbell & Clark: 33, pl. 5, fig. 9.

?1944 *Tristylospyris herdisae* Campbell & Clark: 34, pl. 5, fig. 12.

Derivation of name. Named after its four basal feet.

Diagnosis. Triospyrid with four feet and large pairs of sagittal-lattice pores.

Holotype. Plate 8, figure 1A–B; sample 120-748B-8H-6, 45–47 cm (Late Oligocene); ECO-098.

Material. Six specimens were observed from ODP Site 748.

Description. Bilobed cephalis with a weak sagittal constriction and a flattened apex. Pores on the shell are large and elliptical. They are regularly arranged and separated by thick, crested bars with raised apices. On the ventral side, two pairs of large pores join the shell wall and the sagittal ring: the bars between the two pairs join the ring at mid-height (see Pl. 8, fig. 4A for instance). On the dorsal side also, one pair (the upper one) is smaller than the other (see Pl. 8, fig. 3A). Some specimens have extra bars splitting one of these pairs of sagittal-lattice pores in two (see Pl. 8, fig. 1). Spine D was not seen. Spine C can be seen in some specimens (see Pl. 8, figs 1A and 4A) as a small protuberance at the junction of the sagittal ring with spines LL and LR. Spines LL and LR terminate as robust, tribladed, downward-directed feet. Similarly, both spines P continue as robust (though seemingly less robust than the previous two; see Pl. 8, fig. 3B), tribladed, downward-directed (almost side-ways in some specimens) feet. Both pairs of feet often bifurcate distally at their end (see Pl. 8, figs 2B and 4B). One particular feature of this species’ basal ring is that it lacks an arch LL or VL (see Pl. 8, figs 1A, 2A and 4A).

Dimensions. Based on 5 specimens. Height of the sagittal ring: 62–79 (72); maximum width: 87–107 (96).

Occurrence. All specimens were observed in two samples of the Stylosphaera radiosa Zone (latest Oligocene/Earliest Miocene) of ODP Site 748.

Remarks. It differs from *Dendrospyris pododendros* (Carnevale, 1908) in the latter having three basal spines and a frontal pore. It also differs from *D. stylophora* and from *Triostylospyris scapae* Kozlova, 1999 in lacking an apical spine and in the latticed shell being connected to the sagittal ring by large pairs of pores. While *Triostylospyris pacifica* and *T. herdisae*, both described by Campbell & Clark (1944), seem rather similar, the descriptions for these species clearly state that they possess a well-developed sagittal stricture, which is lacking in *D. quadripes*. The published images for these species are too poor to use for species distinctions, and examination of Clark & Campbell’s type series material by the junior author could find no specimens that fully matched the descriptions given by these authors. Specimens similar to our new species were seen in the Campbell and Clark material but, as they are not individually marked or clearly taxonomically labelled, it is not clear if they correspond to the two species described by them. *D. quadripes* finally differs from *Ceratospyris laventaensis* Campbell & Clark, 1944, *Phormospyris loliguncula* Renaudie & Lazarus, 2013a, *Phormospyris coronata* (Weaver, 1976) and *P. pinnulus* n. sp. in that the latter species have a deeply constricted sagittal ring and numerous smaller pores on the two cephalic lobes.

Genus Phormospyris Haeckel, 1881 emend. Goll, 1976

Type species. *Phormospyris tricostata* Haeckel, 1887

Phormospyris pinnulus n. sp.

(Pl. 8, figs 5–9; ?Pl. 8, figs 10–11A–B)

?1976 *Phormospyris stabilis antarctica* (Haeckel, 1907); Goll: pl. 4, figs 4–6 non 1–3, 7–9.

Derivation of name. From the Latin *pinnulus* for ‘skirt’, after this species’ thoracic wall.
Genus *Rhodospyris* Haeckel, 1881

Type species. *Rhodospyris tricornis* Haeckel, 1887

Rhodospyris pulchra n. sp.

(Pl. 8, figs 12–15)

Derivation of name. From the Latin *pulchra* meaning beautiful.

Diagnosis. Spiry with no sagittal-lattice pores; thorax terminated in several long teeth.

Holotype. Plate 8, figure 13; sample 119-744A-10H-2, 60–62 cm (Early Miocene); ECO-060, circle 2.

Material. Seventeen specimens from DSDP Site 278 and ODP Sites 744 and 748.

Description. Dicyrid with a bilobed cephalis and a latticed thorax, both of approximately similar width. The cephalis is separated into two lobes by a sagittal ring. The sagittal constriction is weak, or not expressed at all. The basal constriction separating the two segments is, by contrast, deeper. Pores on the cephalis and on the thorax are randomly arranged, circular and small. They are all more or less of equivalent size. The shell wall is smooth. No sagittal-lattice pores are present. A relatively small sternal(?) pore can, however, be seen (see Pl. 8, fig. 13). Spine A is most often expressed externally as a small triangular horn at the summit of the sagittal ring. Spines V, D, LI and LR were not observed. The thorax is terminated by a ring of numerous, long, triangular teeth. The thoracic wall on those teeth and a few µm above is smooth and devoid of pores. In some specimens (see Pl. 8, fig. 12), these teeth are directed inwards. The thoracic wall is relatively long even without the teeth. The teeth do not seem to be connected to any internal spines.

Dimensions. Based on four specimens. Total height: 104–141 (119); height of sagittal ring: 48–50 (49); height of thorax from basal ring to the root of the teeth: 33–44 (39); maximum width of the cephalis: 77–86 (82); maximum width of the thorax: 78–81 (78).

Occurrence. Rare from the *Cycladophora antiqua* to the *Cycladophora golli regiipleus* Zones (Early Miocene).

Remarks. This species is very similar to two species described and illustrated by Haeckel (1887): *Rhodospyris tricornis* and *Patagospyris anthocytis*. However, it is distinguished from the first one in possessing only one apical horn and in its considerably shorter thorax (excluding teeth length), from the second primarily in its cephalis and apical horn shapes and sizes, and from both in its weak sagittal constriction. It differs also from *Rhodospyris* sp. aff. *R. anthocytis* Haeckel in Petrushevskaya & Kozlov (1972) and in Ling (1975) in these forms lacking teeth and having a thorax flaring distally and large thoracic pores; from *Rhodospyris* sp. aff. *R. tricornis* Haeckel in Petrushevskaya & Kozlov (1972) and *Rhodospyris* sp. De 1 (Goll) group in Nigrini & Lombardi (1984) in these forms having longitudinal rows of pores on their thorax and lacking the teeth ring. It finally differs from *Dorcadospirys confinis* (Ehrenberg, 1873) primarily in this species lacking a proper thorax and from *Phormospyris stabulis* (Goll, 1968) in its smooth shell, its apical horn and its terminal teeth.

Rhodospyris? morleyi n. sp.

(Pl. 9, figs 4–8)

Derivation of name. Named after Joseph J. Morley, early student of polar radiolarians.

Diagnosis. Spiry with thorax slightly larger and wider than cephalis, and a basal constriction more marked than the sagittal constriction.

Holotype. Plate 9, figure 5; sample 120-748B-8H-2, 45–47 cm (Early Miocene); ECO-080, circle 3.

Material. Fifty-four specimens from DSDP Sites 278 and ODP Sites 744 and 748.

Description. Small dicyrid nassellarian with a cephalis separated into two lobes by a relatively wide sagittal ring. The sagittal constriction is weak, but the basal constriction separating the cephalis from the thorax is stronger. The thorax is somewhat...
wider and longer than the cephalis. Thorax termination is ragged. The cephalic wall is somewhat thicker than the thoracic wall; both bear circular to slightly elliptical pores, regularly arranged. The thoracic pores are larger and more compactly arranged than the cephalic pores. Sagittal-lattice pores are similar to the wall lattice pores in shape and size. One side (ventral?) bears up to three pairs of such pores (see Pl. 9, fig. 7) while the other side (dorsal?) does not seem to bear any (see Pl. 9, fig. 4). Apart from spine A that protrudes in some specimens as a short triangular horn (see Pl. 9, figs 4 and 7), the other internal spines are not clearly distinguishable.

Dimensions. Based on five specimens. Total height: 77–95 (82); height of sagittal ring: 38–46 (43); maximum width of the cephalis: 62–71 (68); maximum width of the thorax: 72–76 (73).

Occurrence. Rare to sporadic from the *Stylosphaera radiosa* Zone (latest Oligocene) to the *Cycladophora humerus* Zone (Middle Miocene).

Remarks. *Phormospyris stabilis* (Goll, 1968), *Dendrospyris hayesi* Chen, 1975 and *Dendrospyris rhodospyroides* (Petrushevskaya, 1975) differ from this species in having a wider cephalis provided with more numerous pores. *Dendrospyris pannosa* Goll, 1968

Fig. 4. Relative abundance of specimens from families Plagiacanthidae, Lithelliidae, Theoperidae and Actinomidae in the Antarctic Neogene based on counts on 98 samples (see Renaudie & Lazarus 2013b).
differs in its large pores and in lacking a proper constriction between the cephalis and thoracic wall. *Dendrospyris bursa* Sanfilippo & Riedel in Sanfilippo et al. (1973) has a considerably larger thorax and a complex apical horn. Finally *Gorgospyris rhizopodia* Haeckel, 1887 has a cephalic wall that continues above the apex of the sagittal ring. Our new species differs from the forms illustrated as ‘De 1’ in Goll (1968) and *Rhodospyris* sp. cf. De 1 group in Petrushevskaya & Kozlova (1972) and in Ling (1975) in its narrower, open thorax.

Genus Tholospyris Haeckel, 1881 emend. Goll, 1969

Type species. *Tholospyris tripodiscus* Haeckel, 1887

Tholospyris tautesaresses n. sp.

(Pl. 8, fig. 16A–C; Pl. 9, figs 1A–B, 15A–B; ?Pl. 9, fig. 2A–B)

Derivation of name. From the Greek letter *tau* and *tautesaresses* meaning ‘four’, *tautesaresses* therefore standing for T4 after the code-name given to it in Goll (1969).

Diagnosis. *Tholospyris* with a large pair of sagittal-lattice pores in dorsal view; latticed shell extends below basal ring; constriction at basal ring.

Holotype. Plate 9, figure 1A–B; sample 120-747A-9H-5, 45–47 cm (Middle Miocene); ECO-057, circle 2.

Material. Thirty-five specimens from DSDP Site 278 and ODP Sites 744, 747 and 748.

Description. A clypeid with a cephalis separated into two lobes by a sagittal ring. This separation is marked externally by a moderate constriction. The two segments are separated by a basal ring internally and externally by a constriction. The thorax consists of a thin and smooth latticed wall attached to the basal ring at a few points (including very probably on spines *Li* and *Lr* at least, see Pl. 8, fig. 16A; Pl. 9, fig. 1B). When more complete (Pl. 8, fig. 16A–C; ?Pl. 9, fig. 2A–B), it is shaped like a half-ellipsoid and might possibly be closed.

Above the apex, a short apical cap links spine A resurgance (Pl. 9, figs 1A and 2B) and the sides of the cephalic lobes, giving to some specimens a proper hemicircular outline to the cephalis (Pl. 9, fig. 1A). On the dorsal side (e.g. Pl. 9, fig. 1A), a pair of large sagittal-lattice pores elongated toward the apex links the basal ring and the sagittal ring. A second smaller pair can be seen above this one. On the ventral side (e.g. Pl. 9, fig. 1B), three medium-sized pairs of sagittal-lattice pores are present. Apart from these pores, the two lobes bear several elliptical pores of various sizes, irregularly arranged, and surrounded by thick, crested bars with raised apices (Pl. 9, figs 2A and 15A). On the thoracic wall, pores are fewer, randomly arranged and elliptical.

Dimensions. Based on four specimens. Total height: 99–167 (140); height of the sagittal ring: 56–72 (61); maximum width of the cephalis: 87–107 (96); long axis of lowest sagittal-lattice paired pores: 21–30 (26).

Occurrence. Sporadic from the *Cycladophora antiqua* to the *Ecystidiun punctatum Zone* (Early Miocene).

Remarks. *Tholospyris tautesaresses* differs from *T. kantiana* (Haeckel, 1887), *T. baconiana* (Haeckel, 1887) and *T. newtoniana* (Haeckel, 1887) primarily in that the latticed shell above the apex, when present, is considerably reduced. It also differs from *Dendrospyris* sp. sakaii Sugiyama & Furutani, 1992 mostly in its peculiar apical structure and in the pattern of the lattice shell below the basal ring. It also differs to some extent from the specimens illustrated as ‘T4’ in Goll (1969) and *T. sp ‘T4’* Goll in Maharapatra & Sharma (1994) in the two pairs of sagittal-lattice pores in front view being unequal in size and in the latticed shell below the basal ring lacking a large aperture just below the latter.

Discussion and conclusions.

One striking feature of the Antarctic radiolarian fauna during the Neogene is the richness (in terms of diversity as well as in terms of relative abundance, see Fig. 4; Renaudie & Lazarus 2013b) in plagiacanthids and more specifically in lophophaenins: 133 species of plagiacanthids (about half of them being lophophaenins) were encountered during our study, including 40 that we described in this series of papers, out of the 490 total species that we observed from the earliest Miocene to the Holocene in this region. It confirms previous observations of high relative diversity of plagiacanthids (in Recent) aurral waters by Boltovskoy (1987) and Boltovskoy et al. (2010). These authors show that they are also very abundant in the North Pacific and the tropical Pacific: although the Neogene diversity of plagiacanthids is well documented in the NW Pacific (e.g. Sugiyama 1993; Funakawa 1994 1995a,b), their tropical diversity as well as their Palaecogene diversity (the group being already present in the late Cretaceous, see e.g. Foreman 1968) is not.

In addition to the underestimated specific diversity of the plagiacanthids, it became obvious during the preparation of this series of papers that their generic taxonomy also needs to be re-examined in detail (see, for instance, the discussions for: *Botryopaera* daleki Renaudie & Lazarus, 2013a; *Lithomelissa* kozoi Renaudie & Lazarus, 2013a; *Ceratocyrtis* ringis Stobolla Renaudie & Lazarus, 2015; *Lophophaena* neuma Renaudie & Lazarus, 2015; or even *Spongomelissa*? bioteniae Renaudie & Lazarus, 2015).

The problem of the holomorph of the ring structure of *Helotholus? vema* Hays, 1965 and, therefore, of this species’ relationship with the other lophophaenins (e.g. Goll 1990; Sugiyama 1993) is also still very much open, and with the addition of *Antarctissa bali-Sta* Renaudie & Lazarus, 2012 and *Botryopaera* daleki Renaudie & Lazarus, 2013a, there are now 14 known species (*Helotholus? vema; H? praevema* Weaver, 1983; *H? hays* Lazarus, 1992; *H? warreni* Goll, 1980; *Antarctissa bali-Sta*; *C. cylindrica* Petrushevskaya, 1967; *A. whitei* Bjørklund, 1976; *Botryopaera* lepottw trầmaca Sugiyama, 1993; *B? daleki*; *Ceratocyrtis*? shimonae Sashida & Kurilhara, 1999; *Steganococcus incrassatus* Funakawa, 1995b; *S. irregularis* Funakawa, 1995b; *S. lipus* Sugiyama, 1993; *S. subtilis* Sugiyama, 1993) bearing such a ring structure, scattered in five different genera (six if we add to the list the plagiacanthin genus *Pseudococcus*).

Triassic cidal diversity seems also to have been significantly underestimated (we described during this series of papers 11 new species out of the 40 we found in the Southern Ocean Neogene assemblages); however, their generic taxonomy is less problematic thanks to the extensive work of Goll (1968, 1969, 1972, 1976). Theoporidae, in contrast, are recorded in the literature more accurately in comparison to their actual diversity (only eight of our new species are theoporidae, even though this family amounts to 84 taxa in this biogeographical province). This, no doubt, reflects the taxonomic knowledge developed from the extensive use of theoporidae over several decades in Cenozoic low latitude biostratigraphy (Sanfilippo et al. 1985).

An observation that is perhaps more surprising than the fact that the current representation of the diversity in the radiolarian literature is uneven with respect to families is the fact that some of the new species we described are amongst the most abundant taxa of the Antarctic Neogene (e.g. *Antarctissa evena* Renaudie & Lazarus, 2013a; *Arachnocorallium cerebellum* Renaudie &
New species of Neogene radiolarians from the Southern Ocean – part IV

Dumitrica, P. 1991. Middle Triassic Tripedurnulidae, n. fam. (Radiolaria) from the eastern Carpathians (Romania) and Vintimilian Alps (Italy). Revue de Micropaléontologie, 34, 261–278.

