Journal metrics

Journal metrics

  • IF value: 0.794 IF 0.794
  • IF 5-year value: 0.931 IF 5-year 0.931
  • CiteScore value: 0.79 CiteScore 0.79
  • SNIP value: 0.533 SNIP 0.533
  • SJR value: 0.255 SJR 0.255
  • IPP value: 1.70 IPP 1.70
  • h5-index value: 8 h5-index 8
  • Scimago H index value: 23 Scimago H index 23
Volume 37, issue 1 | Copyright
J. Micropalaeontol., 37, 97-104, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Jan 2018

Research article | 05 Jan 2018

A deep-sea agglutinated foraminifer tube constructed with planktonic foraminifer shells of a single species

Paul N. Pearson1 and IODP Expedition 363 Shipboard Scientific Party* Paul N. Pearson and IODP Expedition 363 Shipboard Scientific Party
  • 1School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
  • *A full list of authors and their affiliations appears at the end of the paper.

Abstract. Agglutinated foraminifera are marine protists that show apparently complex behaviour in constructing their shells, involving selecting suitable sedimentary grains from their environment, manipulating them in three dimensions, and cementing them precisely into position. Here we illustrate a striking and previously undescribed example of complex organisation in fragments of a tube-like foraminifer (questionably assigned to Rhabdammina) from 1466m water depth on the northwest Australian margin. The tube is constructed from well-cemented siliciclastic grains which form a matrix into which hundreds of planktonic foraminifer shells are regularly spaced in apparently helical bands. These shells are of a single species, Turborotalita clarkei, which has been selected to the exclusion of all other bioclasts. The majority of shells are set horizontally in the matrix with the umbilical side upward. This mode of construction, as is the case with other agglutinated tests, seems to require either an extraordinarily selective trial-and-error process at the site of cementation or an active sensory and decision-making system within the cell.

Download & links
Publications Copernicus
Short summary
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea floor. The tube was made by a single-celled organism by cementing together sedimentary grains from its environment. The specimen is unusual because it implies that the organism used a very high degree of discrimination in selecting its grains, as they are all of one type and most are oriented the same way. It raises intriguing questions of how the organism accomplished this activity.
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea...