Articles | Volume 37, issue 1
https://doi.org/10.5194/jm-37-97-2018
https://doi.org/10.5194/jm-37-97-2018
Research article
 | 
05 Jan 2018
Research article |  | 05 Jan 2018

A deep-sea agglutinated foraminifer tube constructed with planktonic foraminifer shells of a single species

Paul N. Pearson and IODP Expedition 363 Shipboard Scientific Party

Related authors

Biochronology and evolution of Pulleniatina (planktonic foraminifera)
Paul N. Pearson, Jeremy Young, David J. King, and Bridget S. Wade
J. Micropalaeontol., 42, 211–255, https://doi.org/10.5194/jm-42-211-2023,https://doi.org/10.5194/jm-42-211-2023, 2023
Short summary
Globigerinoides rublobatus – a new species of Pleistocene planktonic foraminifera
Marcin Latas, Paul N. Pearson, Christopher R. Poole, Alessio Fabbrini, and Bridget S. Wade
J. Micropalaeontol., 42, 57–81, https://doi.org/10.5194/jm-42-57-2023,https://doi.org/10.5194/jm-42-57-2023, 2023
Short summary
Spine-like structures in Paleogene muricate planktonic foraminifera
Paul N. Pearson, Eleanor John, Bridget S. Wade, Simon D'haenens, and Caroline H. Lear
J. Micropalaeontol., 41, 107–127, https://doi.org/10.5194/jm-41-107-2022,https://doi.org/10.5194/jm-41-107-2022, 2022
Short summary
Late Neogene evolution of modern deep-dwelling plankton
Flavia Boscolo-Galazzo, Amy Jones, Tom Dunkley Jones, Katherine A. Crichton, Bridget S. Wade, and Paul N. Pearson
Biogeosciences, 19, 743–762, https://doi.org/10.5194/bg-19-743-2022,https://doi.org/10.5194/bg-19-743-2022, 2022
Short summary
Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model
Katherine A. Crichton, Andy Ridgwell, Daniel J. Lunt, Alex Farnsworth, and Paul N. Pearson
Clim. Past, 17, 2223–2254, https://doi.org/10.5194/cp-17-2223-2021,https://doi.org/10.5194/cp-17-2223-2021, 2021
Short summary

Cited articles

Allen, K., Roberts, S., and Murray, J. W.: Fractal grain distribution in agglutinated foraminifera, Paleobiology, 24, 349–358, 1988. 
Allen, K., Roberts, S., and Murray, J. W.: Marginal marine agglutinated Foraminifera: Affinities for mineral phases, J. Micropalaeontology, 18, 183–191, 1999. 
Armynot du Châtelet, E., Frontalini, F., Guillot, F., Recourt, P., and Ventalon, S.: Surface analysis of agglutinated benthic foraminifera through ESEM-EDS and Raman analysis: An expeditious approach for tracing mineral diversity, Mar. Micropaleontol., 105, 18–29, 2013. 
Brady, H. B.: Notes on some of the reticularian Rhizopoda of the “Challenger” expedition. 1. On new or little known arenaceous types, Q. J. Microsc. Sci., New Series, 19, 20–63, 1879. 
Burkhardt, F., Secord, J. A., Bowne, J., Evans, S., Innes, S., Neary, F., Pearn, A. M., Secord, A., and White, P. (Eds.): The Correspondence of Charles Darwin: Volume 21, 1873, Cambridge University Press, 274 pp., 2014. 
Download
Short summary
We describe an unusual millimetre-long tube that was discovered in sediment from the deep sea floor. The tube was made by a single-celled organism by cementing together sedimentary grains from its environment. The specimen is unusual because it implies that the organism used a very high degree of discrimination in selecting its grains, as they are all of one type and most are oriented the same way. It raises intriguing questions of how the organism accomplished this activity.